Abstract
Convolutional neural networks (CNNs) is a category of deep neural networks that are primarily used for classifying image data. Yet, their continuous gain in popularity poses important privacy concerns for the potentially sensitive data that they process. A solution to this problem is to combine CNNs with Fully Homomorphic Encryption (FHE) techniques. In this work, we study this approach by focusing on two popular FHE schemes, \(\mathsf {TFHE}\) and \(\mathsf {HEAAN}\), that can work in the approximated computational model. We start by providing an analysis of the noise after each principal homomorphic operation, i.e. multiplication, linear combination, rotation and bootstrapping. Then, we provide a theoretical study on how the most important non-linear operations of a CNN (i.e. \(\max , \mathtt {Abs}, \mathtt {ReLU} \)), can be evaluated in each scheme. Finally, we measure via practical experiments on the plaintext the robustness of different neural networks against perturbations of their internal weights that could potentially result from the propagation of large homomorphic noise. This allows us to simulate homomorphic evaluations with large amounts of noise and to predict the effect on the classification accuracy without a real evaluation of heavy and time-consuming homomorphic operations. In addition, this approach enables us to correctly choose smaller and more efficient parameter sets for both schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cats and dogs and convolutional neural networks, September 2016. http://www.subsubroutine.com/sub-subroutine/2016/9/30/cats-and-dogs-and-convolutional-neural-networks
Track 2: Secure parallel genome wide association studies using homomorphic encryption (2018). www.humangenomeprivacy.org/2018/competition-tasks.html
Albrecht, M., et al.: Homomorphic encryption security standard. Technical report, HomomorphicEncryption.org, Toronto, Canada, November 2018
Badawi, A.A., et al.: The AlexNet moment for homomorphic encryption: HCNN, the first homomorphic CNN on encrypted data with GPUs. Cryptology ePrint Archive, Report 2018/1056 (2018). https://eprint.iacr.org/2018/1056
Boura, C., Chillotti, I., Gama, N., Jetchev, D., Peceny, S., Petric, A.: High-precision privacy-preserving real-valued function evaluation. IACR Cryptology ePrint Archive 2017, 1234 (2017)
Boura, C., Gama, N., Georgieva, M.: Chimera: a unified framework for B/FV, TFHE and HEAAN fully homomorphic encryption and predictions for deep learning. Cryptology ePrint Archive, Report 2018/758 (2018)
Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_17
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS 2012, pp. 309–325. ACM (2012)
Carpov, S., Gama, N., Georgieva, M., Troncoso-Pastoriza, J.R.: Privacy-preserving semi-parallel logistic regression training with fully homomorphic encryption. Cryptology ePrint Archive, Report 2019/101 (2019). https://eprint.iacr.org/2019/101
Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-preserving classification on deep neural network. Cryptology ePrint Archive, Report 2017/035 (2017). https://eprint.iacr.org/2017/035
Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL v2.1. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_1
Cheney, N., Schrimpf, M., Kreiman, G.: On the robustness of convolutional neural networks to internal architecture and weight perturbations. CoRR, abs/1703.08245 (2017)
Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_14
Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. Cryptology ePrint Archive, Report 2018/421 (2018). https://eprint.iacr.org/2018/421
Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24
Elson, J., Douceur, J.R., Howell, J., Saul. J.: Asirra: a CAPTCHA that exploits interest-aligned manual image categorization. In: Proceedings of the 2007 ACM Security, CCS 2007, pp. 366–374. ACM (2007)
Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive 2012, 144 (2012)
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, 19–24 June 2016, pp. 201–210 (2016)
Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: ICML 2016. JMLR Workshop and Conference Proceedings, vol. 48, pp. 201–210. JMLR.org (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR 2016, pp. 770–778. IEEE Computer Society (2016)
Jiang, X., Kim, M., Lauter, K.E., Song, Y.: Secure outsourced matrix computation and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018, pp. 1209–1222. ACM (2018)
King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, pp. 2278–2324 (1998)
Lecun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Wagh, S., Gupta, D., Chandran, N.: SecureNN: efficient and private neural network training. Cryptology ePrint Archive, Report 2018/442 (2018). https://eprint.iacr.org/2018/442
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Boura, C., Gama, N., Georgieva, M., Jetchev, D. (2019). Simulating Homomorphic Evaluation of Deep Learning Predictions. In: Dolev, S., Hendler, D., Lodha, S., Yung, M. (eds) Cyber Security Cryptography and Machine Learning. CSCML 2019. Lecture Notes in Computer Science(), vol 11527. Springer, Cham. https://doi.org/10.1007/978-3-030-20951-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-20951-3_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20950-6
Online ISBN: 978-3-030-20951-3
eBook Packages: Computer ScienceComputer Science (R0)