Skip to main content

Digital Resources in Science, Mathematics and Technology Teaching – How to Convert Them into Tools to Learn

  • Conference paper
  • First Online:
Technology and Innovation in Learning, Teaching and Education (TECH-EDU 2018)

Abstract

This paper deals with the problem of why many teachers take up little educational benefit from digital resources, despite their potential to help create learning environments with greater student engagement and stimulating intellectual challenges. A systematization of the main factors identified in the literature is made. Starting from a framework based on the idea of conceiving any educational resource as an artefact that can be used as a tool, and extending the concept of instrumental orchestration, guidelines are proposed for using digital resources as epistemic tools to learn and a research program to be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roseman, J.E., Fortus, D., Krajcik, J.: Curriculum materials for next generation science standards: what the science education research community can do. In: NARST Annual International Conference, Chicago, IL (2015)

    Google Scholar 

  2. Schwarz, C.V., Meyer, J., Sharma, A.: Technology, pedagogy, and epistemology: opportunities and challenges of using computer modeling and simulation tools in elementary science methods. J. Sci. Teacher Educ. 18(2), 243–269 (2007)

    Article  Google Scholar 

  3. Paris, S.G. (ed.): Perspectives on Object-Centered Learning in Museums. Routledge, New York (2002)

    Google Scholar 

  4. Monaghan, J., Trouche, L., Borwein, J.M.: Tools and Mathematics. Springer, Berlin (2016)

    Book  Google Scholar 

  5. Bain, R., Ellenbogen, K.M.: Placing objects within disciplinary science. In: Paris, S.G. (ed.) Perspectives on Object-Centered Learning in Museums, p. 140. Routledge, New York (2002)

    Google Scholar 

  6. Engle, R.A., Conant, F.R.: Guiding principles for fostering productive disciplinary engagement: explaining an emergent argument in a community of learners classroom. Cognit. Instr. 20(4), 399–483 (2002)

    Article  Google Scholar 

  7. Markauskaite, L., Goodyear, P.: Epistemic tools and artefacts in epistemic practices and systems. Epistemic Fluency and Professional Education. PPL, vol. 14, pp. 233–264. Springer, Dordrecht (2017). https://doi.org/10.1007/978-94-007-4369-4_9

    Chapter  Google Scholar 

  8. Baird, D.: Thing Knowledge: A Philosophy of Scientific Instruments. University of California Press, California (2004)

    Google Scholar 

  9. Knuuttila, T.: Modelling and representing: an artefactual approach to model-based representation. Stud. Hist. Philos. Sci. Part A 42(2), 262–271 (2011)

    Article  Google Scholar 

  10. Sterelny, K.: Externalism, epistemic artefacts and the extended mind. In: Schantz, R. (ed.) The externalist challenge, pp. 239–254. Walter de Gruyter, Berlin (2004)

    Google Scholar 

  11. Nia, M.G., de Vries, M.J.: Models as artefacts of a dual nature: a philosophical contribution to teaching about models designed and used in engineering practice. Int. J. Technol. Des. Educ. 27(4), 627–653 (2017)

    Article  Google Scholar 

  12. Corredor, J., Gaydos, M., Squire, K.: Seeing change in time: video games to teach about temporal change in scientific phenomena. J. Sci. Educ. Technol. 23(3), 324–343 (2014)

    Article  Google Scholar 

  13. Evagorou, M., Erduran, S., Mäntylä, T.: The role of visual representations in scientific practices: from conceptual understanding and knowledge generation to ‘seeing’ how science works. Int. J. STEM Edu. 2, 11 (2015)

    Article  Google Scholar 

  14. Hougham, R.J., Eitel, B., Miller, B.G.: Technology-enriched STEM investigations of place: using technology to extend the senses and build connections to and between places in science education. J. Geosci. Educ. 63(2), 90–97 (2015)

    Article  Google Scholar 

  15. Drijvers, P., et al.: The teacher and the tool: instrumental orchestrations in the technology-rich mathematics classroom. Edu. Stud. Math. 75(2), 213–234 (2010)

    Article  Google Scholar 

  16. Price, S., et al.: Fostering geospatial thinking in science education through a customisable smartphone application. Br. J. Edu. Technol. 45(1), 160–170 (2014)

    Article  Google Scholar 

  17. Soylu, F., Brady, C., Holbert, N., Wilensky, U.: The thinking hand: Embodiment of tool use, social cognition and metaphorical thinking and implications for learning design. In: The Annual Meeting of the American Educational Research, Philadelphia, PA (2014)

    Google Scholar 

  18. Kieran, C., Drijvers, P.: Digital technology and mathematics education: core ideas and key dimensions of Michèle Artigue’s theoretical work on digital tools and its impact on mathematics education research. In: Hodgson, B.R., Kuzniak, A., Lagrange, J.-B. (eds.) The Didactics of Mathematics: Approaches and Issues, pp. 123–142. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26047-1_6

    Chapter  Google Scholar 

  19. Trouche, L.: Managing the complexity of human/machine interactions in computerized learning environments: guiding students’ command process through instrumental orchestrations. Int. J. Comput. Math. Learn. 9(3), 281–307 (2004)

    Article  Google Scholar 

  20. Drijvers, P.: Digital technology in mathematics education: why it works (or doesn’t). In: Cho, S.J. (ed.) Selected Regular Lectures from the 12th International Congress on Mathematical Education, pp. 135–151. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17187-6_8

    Chapter  Google Scholar 

  21. Mayer, R.E.: Should there be a three-strikes rule against pure discovery learning? Am. Psychol. 59(1), 14–19 (2004)

    Article  Google Scholar 

  22. Monaghan, J., Trouche, L.: Tasks and digital tools. In: Monaghan, J., Trouche, L., Borwein, J. (eds.) Tools and Mathematics. MELI, vol. 110, pp. 391–415. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-02396-0_17

    Chapter  Google Scholar 

  23. Hollebrands, K., Okumuş, S.: Secondary mathematics teachers’ instrumental integration in technology-rich geometry classrooms. J. Math. Behav. 49, 82–94 (2017)

    Article  Google Scholar 

  24. Bruner, J.S.: The act of discovery. Harvard Edu. Rev. 31, 21–32 (1961)

    Google Scholar 

  25. Kirschner, P.A., Sweller, J., Clark, R.E.: Why minimal guidance during instruction does not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Edu. Psychol. 41(2), 75–86 (2006)

    Article  Google Scholar 

  26. Araújo, F., Lopes, J.B., Cravino, J.P., Soares, A.: Estados físicos da matéria. Simulações computacionais no 5º ano de escolaridade. Comunicações 24(1), 35–54 (2017)

    Article  Google Scholar 

  27. Chang, H.: Teacher guidance to mediate student inquiry through interactive dynamic visualizations. Instr. Sci. 41, 895–920 (2013)

    Article  Google Scholar 

  28. Rutten, N., van Joolingen, W.R., Veen, J.T.: The learning effects of computer simulations in science education. Comput. Educ. 58, 136–153 (2012)

    Article  Google Scholar 

  29. Moli, L., Delserieys, A.P., Impedovo, M.A., Castera, J.: Learning density in Vanuatu high school with computer simulation: influence of different levels of guidance. Edu. Inf. Technol. 22(4), 1947–1964 (2017)

    Article  Google Scholar 

  30. Hsu, Y., Gao, Y., Liu, T.C., Sweller, J.: Interactions between levels of instructional detail and expertise when learning with computer simulations. Edu. Technol. Soc. 18(4), 113–127 (2015)

    Google Scholar 

  31. Paiva, J.C., Costa, L.A.: Exploration guides as a strategy to improve the effectiveness of educational software in chemistry. J. Chem. Educ. 87(6), 589–591 (2010)

    Article  Google Scholar 

  32. Paiva, J., Fonseca, S.: Facing barriers in the teaching chemical equilibrium approaches based on the use of ICT. In: Hansen, K., Gräber, W., Lang, M. (eds.) Crossnet Crossing Boundaries in Science Teacher Education, pp. 135–160. Waxmann, Münster (2012)

    Google Scholar 

  33. Chinn, C.A., Malhotra, B.A.: Epistemologically authentic inquiry in schools: a theoretical framework for evaluating inquiry tasks. Sci. Edu. 86(2), 175–218 (2002)

    Article  Google Scholar 

  34. El Mhouti, A., Erradi, M., Nasseh, A.: An evaluation model of digital educational resources. Int. J. Emerg. Technol. Learn. (IJET) 8(2), 29–35 (2013)

    Google Scholar 

  35. Bower, M., Hedberg, J.G., Kuswara, A.: A framework for Web 20 learning design. Edu. Media Int. 47(3), 177–198 (2010)

    Article  Google Scholar 

  36. Domingos, P.: The master algorithm: How the quest for the ultimate learning machine will remake our world. Basic Books, NewYork (2015)

    Google Scholar 

  37. Paiva, J.C., et al.: Desenvolvimento profissional e cooperação internacional para professores de Química: avaliação da intenção de mudança pedagógica após formação continuada no Porto. Portugal. Quimica Nova 40(1), 105–112 (2017)

    MathSciNet  Google Scholar 

  38. Bray, A., Tangney, B.: Technology usage in mathematics education research: a systematic review of recent trends. Comput. Educ. 114, 255–273 (2017)

    Article  Google Scholar 

  39. Montenegro, P., Costa, C., Lopes, J.B.: Transformations in the visual representation of a figural pattern. Math. Thinking Learn. 20(2), 91–107 (2018)

    Article  Google Scholar 

  40. Serra, L., Costa, C., Catarino, P., Lopes, J.B.: A cultura como recurso educativo numa aula de matemática. Indagatio Didactica 8(4), 62–72 (2016)

    Google Scholar 

Download references

Acknowledgment

National Funds through the FCT - Foundation for Science and Technology, I.P., finance this work under the UID/CED/00194/2013 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bernardino Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lopes, J.B., Costa, C. (2019). Digital Resources in Science, Mathematics and Technology Teaching – How to Convert Them into Tools to Learn. In: Tsitouridou, M., A. Diniz, J., Mikropoulos, T. (eds) Technology and Innovation in Learning, Teaching and Education. TECH-EDU 2018. Communications in Computer and Information Science, vol 993. Springer, Cham. https://doi.org/10.1007/978-3-030-20954-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20954-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20953-7

  • Online ISBN: 978-3-030-20954-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics