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Abstract. We present the first purely event-based, energy-efficient ap-
proach for object detection and categorization using an event camera.
Compared to traditional frame-based cameras, choosing event cameras
results in high temporal resolution (order of microseconds), low power
consumption (few hundred mW) and wide dynamic range (120 dB) as
attractive properties. However, event-based object recognition systems
are far behind their frame-based counterparts in terms of accuracy. To
this end, this paper presents an event-based feature extraction method
devised by accumulating local activity across the image frame and then
applying principal component analysis (PCA) to the normalized neigh-
borhood region. Subsequently, we propose a backtracking-free k-d tree
mechanism for efficient feature matching by taking advantage of the
low-dimensionality of the feature representation. Additionally, the pro-
posed k-d tree mechanism allows for feature selection to obtain a lower-
dimensional dictionary representation when hardware resources are lim-
ited to implement dimensionality reduction. Consequently, the proposed
system can be realized on a field-programmable gate array (FPGA) de-
vice leading to high performance over resource ratio. The proposed sys-
tem is tested on real-world event-based datasets for object categorization,
showing superior classification performance and relevance to state-of-the-
art algorithms. Additionally, we verified the object detection method and
real-time FPGA performance in lab settings under non-controlled illu-
mination conditions with limited training data and ground truth anno-
tations.

Keywords: Object recognition - Neuromorphic vision - Silicon retinas
- Low-power FPGA - Object detection - Event cameras.

1 Introduction

Through these fruitful decades of computer vision research, we have taken huge
strides in solving specific object recognition tasks, such as classification systems
for automated assembly line inspection, hand-written character recognition in
mail sorting machines, bill inspection in automated teller machines, to name a
few. Despite these successful applications, generalizing object appearance, even
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under moderately controlled sensing environments, for robust and practical solu-
tions for industrial challenges like robot navigation and sense-making is a major
challenge. This paper focuses on the industrially relevant problem of real-time,
low-power object detection using an asynchronous event-based camera [2] with
limited training data under unconstrained lighting conditions. Compared to tra-
ditional frame-based cameras, event cameras do not have a global shutter or a
clock that determines its output. Instead, each pixel responds independently to
temporal changes with a latency ranging from a low of tens of microseconds to
a high of few milliseconds. This local sensing paradigm naturally results in a
wider dynamic range (120 dB), as opposed to the usual 60 dB for frame-based
cameras.

Most significantly, event cameras do not output pixel intensities, but only
a spike output with a precise timestamp, also termed an event, that signifies a
sufficient change in log-intensity of the pixel. As a result, event cameras require
lower transmission bandwidth and consume only a few hundred mW vs. a few W
by standard cameras [2I]. In summary, event-based cameras offer a fundamen-
tally different perspective to visual imaging while having a strong emphasis on
low-latency and low-power algorithms [7I3I[TGI4].

Despite the notable advantages of event cameras, there still remains a signif-
icant performance gap between event camera algorithms and frame-based coun-
terparts for various vision problems. This is partly due to a requirement of totally
new event-by-event processing paradigms. However, the burgeoning interest in
event-based classification/detection is focused on closing the gap using deep spik-
ing neural networks [I79], something that again entails dependence on powerful
hardware like its frame-based counterpart. On the other hand, a succession of
frames captured at a constant rate (say 30 Hz), regardless of the scene dynamics
and ego-motion, works well with controlled scene condition and camera motion.
Frame-based computer vision algorithms have benefited immensely from sophis-
ticated methodologies that reduce the computational burden by selecting and
processing only informative regions/keypoints within an image [T2/5123129]. In
addition, frame-based sensing has led to high hardware complexity, such as pow-
erful GPU requirements for state-of-the-art object detection frameworks using
deep neural networks [25/26].

In contrast to the above works, this paper introduces a simple, energy-efficient
approach for object detection and categorization. Fig. [ illustrates the local
event-based feature extraction pipeline that is used for classification using a
dictionary-based method. Accordingly, efficient feature matching with the dic-
tionary is required, which is handled by a backtracking-free branch-and-bound
k-d tree. This proposed system was ported to a field programmable gate array
(FPGA) with certain critical design decisions, one of which demanded a virtual
dimensionality reduction method based on the k-d tree, to accommodate very
low-power computational needs.
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Fig. 1: PCA-RECT representation (best viewed on monitor). Useful events are sub-
sampled and filtered after applying nearest-neighbor temporal filtering and refractory
filtering, termed as rectangular event context transform (RECT). The sparser RECT
event representation is updated dynamically using a first in, first out (FIFO) buffer.
Subsequent feature extraction is carried out by applying principal component analysis
(PCA) to project RECT onto a lower-dimensional subspace to obtain the final PCA-
RECT feature representation

2 Event Cameras

For real-time experiments, we use the commercial event camera, the Dynamic
and Active-pixel Vision Sensor (DAVIS) [2]. It has 240 x 180 resolution, 130 dB
dynamic range and 3 microsecond latency. The DAVIS can concurrently output
a stream of events and frame-based intensity read-outs using the same pixel
array. An event consists of a pixel location (x, y), a binary polarity value (p)
for positive or negative change in log intensity and a timestamp in microseconds
(). In this work, polarity of the events are not considered, and only the event
stream of the DAVIS is used.

2.1 Related Work

Since event-based vision is relatively new, only a limited amount of work ad-
dresses object detection using these devices [TTJI0]. Liu et al. [I1I] focuses on
combining a frame-based CNN detector to facilitate the event-based module. We
argue that works using deep neural networks for event-based object detection
may achieve good performance with lots of training data and computing power,
but they go against the idea of low-latency, low-power event-based vision. In con-
trast, [I0] presents a practical event-based approach to face detection by looking
for pairs of blinking eyes. While [10] is applicable to human faces in the presence
of activity, we develop a general purpose event-based, object detection method
using a simple feature representation based on local event aggregation. Thus, this
paper is similar in spirit to the recently spawned ideas of generating event-based
descriptors, such as histogram of averaged time surfaces [28] and log-polar grids
[24122]. Moreover, the proposed object detection and categorization method was
accommodated on FPGA to demonstrate energy-efficient low-power vision.
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3 Method

We follow the event-based classification framework proposed in [22], with the fol-
lowing crucial changes: a new descriptor (PCA-RECT), a virtual dimensionality
reduction technique using k-d trees (vVPCA) and a simplified feature matching
mechanism to account for hardware limitations. The framework [22] consists of
four main stages: feature extraction, feature matching with a dictionary, dictio-
nary representation followed by a linear classifier. Additionally, we incorporate
an object detector in the framework as explained in the following subsections.

3.1 PCA-RECT

BEach incoming event, e; = (z;,v:,t;,p;)? with pixel location x; and y;, times-
tamp t;, polarity p;, is encoded as a feature vector x;. To deal with hardware-level
noise from the event camera, two main steps are used: (1) nearest neighbour fil-
tering and (2) refractory filtering. We define a spatial Euclidean distance between

events as,
T; T
D; ;= ) - 7
" H(yz) (%)'

Using the above distance measure, for any event we can define a set of previous
events within a spatial neighborhood, N (e;,v) = {e; | j <4, D;,; <~} , where
v = /2 for an eight-connected pixel neighbourhood. When the time difference
between the current event and the most recent neighboring event is less than a
threshold, ®,,p;se, the filter can be written as

(1)

Fnoise (e) = {e1| N(ei, \/5)\]\](81, O) > €; | ti — tj < ®noise} . (2)

When the neighborhood is only the current pixel, v = 0, the set of events getting
through the refractory filter F,..; are those such that,

Frep(e) ={ej| ti—1;>Orep Vile; € Nej, 0)}. (3)
Cascading the filters, we can write the filtered incoming events as,
{e} = Fuoise (Frer () ) - (4)

As shown in Fig.[I], the incoming events &; are first pushed into a FIFO buffer.
The FIFO queue is then used to update an event-count matrix C' € R™*" where
m and n denote the number of rows and columns of the event camera output.

C(wi,yi) = Clwi,yi) + 1. (5)

Before pushing the latest event, the FIFO buffer of size s is popped to make
space and simultaneously update the count matrix C,

C(Tis, Yims) = C(Ti—s, Yi—s) — 1 . (6)
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The event-count C' is pooled to build local representations, which are further
aggregated to obtain the RECT representation of each event. In particular, let
A be a p x p square filter, the 2-D convolution is defined as,

R(k)=> Y Apa)C(i —p+1,k—q+1), (7)

where p run over all values that lead to legal subscripts of A(p,p) and C(j —
p+ 1,k —p+1). In this work, we consider a filter containing equal weights
(commonly known as an averaging filter) for simplicity, while it is worth ex-
ploring Gaussian-type filters that can suppress noisy events. The resultant 2-D
representation is termed as filtered matrix R € R(™/P)X(n/P) where the filter
dimensions are chosen to be give integer values for m/p and n/q or conversely
C is zero-padded sufficiently. Subsequently, the RECT representation for &; is
obtained as a patch u; of dimension d centered at R(y/p,x/p). Subsequently,
the filtered event-count patch is projected on-to a lower-dimensional subspace
using principal component analysis (PCA) for eliminating noisy dimensions and
improving classifier accuracy.

3.2 Feature Selection and Matching using K-d Trees

The PCA-RECT feature representation for each event is classified using a dic-
tionary type method [22] that can handle the recognition of the desired object
categories. However, exhaustive search is too costly for nearest neighbor match-
ing with a dictionary, and approximate algorithms can be orders of magnitude
faster than exact search, while almost achieving par accuracy.

In the vision community, k-d tree nearest-neighbor search is popular [27/T4],
as a means of searching for feature vectors in a large training database. Given n
feature vectors x; € Rd,, the k-d tree construction algorithm recursively parti-
tions the d’-dimensional Euclidean space into hyper-rectangles along the dimen-
sion of maximum variance. However, for high dimensional data, backtracking
through the tree to find the optimal solution takes a lot of time.

This paper proposes a simple, backtracking-free branch-and-bound search for
dictionary matching, taking advantage of the low-dimensionality of the PCA-
RECT representation. The hypothesis is that, in general, the point recovered
from the leaf node is a good approximation to the nearest neighbor in low-
dimensional spaces, and performance degrades rapidly with increase in dimen-
sionality, as inferred from the intermediate results in [I]. In other words, with
(logy n) —1 scalar comparisons, nearest neighbor matching is accomplished with-
out an explicit distance calculation. While the PCA-RECT representation is
useful for software implementations, an extra PCA projection step can be com-
putationally demanding on FPGA devices. To this end, we propose a virtual
PCA-RECT representation based on the k-d tree, termed as vPCA-RECT.

vPCA-RECT A key insight is that only a fraction of the data dimensions are
used to partition the k-d tree, especially when the dictionary size is only a few
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times more than the feature dimension. Therefore, instead of using the PCA-
RECT representation, an alternative dimensionality reduction scheme can be
implemented by discarding the unused dimensions in the k-d tree structure. In
other words, the RECT representation is first used to build a k-d tree that selects
the important dimensions (projection ), which are then utilized for dictionary
learning and classification. It is worth noting that exactly the same k-d tree will
be obtained if the RECT data is first projected by m onto a subspace that is
aligned with the coordinate axes. Since no actual projection takes place, we refer
to this as a virtual projection — the irrelevant dimensions chosen by the k-d tree
are discarded to obtain a lower-dimensional feature representation.

3.3 Event-based Object Categorization and Detection

The learning stage: Using either the PCA-RECT or vPCA-RECT event rep-
resentation, the learning process corresponds to creating a set of K features
denoted as M = {1,2,--- , K} to form the dictionary. First, a simple sampling
process is carried out such that, during training, a large pool of event represen-
tations of various categories and at random positions are extracted from a target
set of events. In our setup, the dictionary features are learned from the sampled
training set using clustering for all the objects jointly.

The learning stage for detection builds on top of the categorization module,
in such a way that the learning process corresponds to selecting a subset of
features from the dictionary for each object. In contrast to the learning phase
of the categorization module, the detector features are selected from the whole
training set in a supervised one-vs-all manner.

We propose to evaluate the balanced matches Yff to each dictionary feature
fr from the target events against the matches Y* for all the other events to the
respective feature. Mathematically, the ratio

gyt vE vE
D(k) = # , where ﬁi = K|7+|, and g* = K|7| , (8)
- >k >

is to be maximized. The balancing component ﬁi denotes the percentage of
target events matched to the dictionary feature f. Similarly, 3% denotes the
percentage of non-target events matched to the dictionary feature fj. Thus,
choosing the detector features with the D-largest ratios completes the learning
phase.

The classification/detection stage: At runtime, the event representations are
propagated through the k-d tree. On the one hand, the distribution of the dictio-
nary features are then extracted and further passed to a simple linear classifier
(we experimented with both linear SVM and Kernel Methods). On the other
hand, the event representations propagated through the k-d tree are matched
with the detector features . Those matched events are used to update a location
map for the target object and the region with the highest activation is considered
to be the final detection result.
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Fig. 2: FPGA implementation details

4 FPGA Implementation

4.1 Categorization Pipeline

In order to showcase energy-efficient event-based object recognition, the FPGA
implementation of the algorithm is designed as a series of four independent
hardware units: event sub-sampling, vPCA-RECT generation, a recursive k-d
tree and a SVM classifier output on an event-by-event basis, each of which has
an independent block design. Generally, these hardware counterparts are not a
direct application of the algorithm presented in the earlier section, i.e., certain
design decisions were taken for this task, among them, to desist the use of an
extra PCA projection along the pipeline.
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The sub-sampling block receives the filtered event locations as input values x
and y, each 8-bit in size, which are used to update the zero-padded count matrix
C € R™*" (Eq. @) and Eq. ([@)). The sub-sampling behavior can be achieved in
hardware through a combinatorial module that performs the division by shifting
the inputs by one bit, and subsequently adding p and ¢ to that value to obtain
the sub-sampled representation (Eq. (). This results in two 7-bit values which
are then concatenated to output a single memory address (Fig. 2(a)).

The next block uses the cell-count matrix R € R™/P)x("/9)  created by
a block of distributed RAM of depth ((m/p) x (n/q)) and log(s)-bits width,
corresponding to the FIFO buffer size s, initialized to zero for generating the
vPCA-RECT representation. To generate a descriptor with respect to the last
event received would add a considerable overhead, since each element of the
descriptor would have to be read sequentially from the block RAM while being
stored by the next module. Instead, the address corresponding to the center of
the descriptor is provided, i.e. the input address of the count matrix is passed
over to the k-d tree module. This allows to trigger the k-d tree in one clock cycle
once the count matrix is updated and later read the descriptor values based on
this single coordinate. However, a new issue arises, the count matrix then can not
be modified while the k-d tree exploration is being performed. Hence a buffering
element is added between the sub-sampling and count matrix modules that will
only provide the next address once there is a valid output from the tree.

The k-d tree nodes are represented in a 49-bit number stored in a previously
initialized single port ROM of depth equal to the number of nodes. This number
is conformed by the elements of a node: type, left node, right node, index output,
split value and split dimension; these are concatenated and their width is shown
in Fig. 2(b).

The k-d tree module follows a three steps cycle (Fig. 2c)). The split di-
mension of a k-d tree node provides the address that needs to be read from
the cell-count matrix block RAM to get the relevant descriptor value. Next, the
descriptor value is compared to the previously stored split value from the node,
taking a path down the tree, left or right, depending on the boolean condition.
The corresponding node to get is then retrieved from the respective left or right
address element acquired in the retrieval step. This cycle repeats until the node
type belongs to a leaf, then the leaf node output is made available for the clas-
sifier module. It is worth mentioning that in the software implementation of
this algorithm, once the descriptor is formed, it is then normalized before be-
ing passed to the k-d tree. A normalization step in hardware would add a big
overhead to the pipeline, disturbing its throughput, and it was removed from
the FPGA implementation after verifying that the overall performance was not
affected harshly.

At runtime in a software implementation, the classification is performed by
a linear combination of the weights and a feature vector created by the k-d tree
after a buffer time of S events. To achieve this in a hardware implementation,
the depth of the feature vector would have to be transversed while performing
several multiplications which would require a considerable amount of multiplier
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Algorithm 1 Event-based FPGA Object Detection

Input: Filtered event stream {é}, detector landmarks [, number of events S
Output: Mean object location (Zobj, Yob;)

1: Initialize detector count D(y,z) = Opm,n, detector cut-off threshold = 0
2: fort=1:5do
3: For each incoming event &; = (¢, Y, te, pe, X; )"

4: For x; get leaf node index [; using k-d tree
5: if [; € [ then

6: D(ys,x¢) = D(ye,xe) + 1

7 if D(y:,x¢) > threshold then

8: threshold = threshold + 1

9: Reset detector mean calculation FIFO
10: end if

11: if D(yt,z¢) = threshold then

12: Push x,y: into the mean calculation FIFO
13: end if

14: end if

15: end for

16: Output the mean of the coordinates in the FIFO as (Zobj, Yob;)

elements from the FPGA, and would affect the speed of the module. Thus, it
was desired to avoid this solution and the following was proposed.

The elements of the linear combination mentioned would be acquired as
readily available and would be added to an overall sum vector of length equal
to the number of classes to classify, hence performing the dot product operation
as one addition per event. Then, after S events, a resulting vector is formed,
which is equal to the result of the same linear combination first mentioned in
the software implementation. Thus, the final module to perform the classification
receives the output index from the k-d tree and adds its corresponding classifier
parameter to a sum vector of length equal to the number of classes. In parallel,
this index value is stored in another FIFO element. When the queue is full, the
oldest value would be passed to the module to be subtracted from the sum. This
allows to have a classification output at any point in time, corresponding to the
last S events.

4.2 Detection Pipeline

Parallel to the modules performing the classification pipeline, the aim of the
detection process is to find the coordinates corresponding to “landmarks” with
the highest activation after S events, and then find the most probable location
for the object. Again, the algorithm was divided into multiple coherent hardware
modules that would produce the same results as the original software version.
The designed blocks are: landmarks detector, detection heat map and mean
calculation.

First, the dictionary features corresponding to the landmarks that were cal-
culated offline are loaded into a binary memory block. This module receives as
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(b). N-Caltech101 Samples

Fig. 3: Samples from the Event-based Benchmark Datasets

input the dictionary feature index provided by the k-d tree for the current event.
If the feature is found as one of the landmarks, the respective event coordinates
z and y are passed as a concatenated address to the next module in the pipeline.
Next, a stage corresponding to the heat map is utilized. This module holds a
matrix represented as a block RAM of depth m X n, since the coordinates are
not sub-sampled and have the ranges 1 < x < m and 1 < y < n. For each new
input address, its value in memory is incremented.

Since the aim of the detection algorithm is to calculate the average of the
coordinates with the highest activation, it would be inefficient to find these event
addresses after S events. Therefore, the coordinates with the highest count are
stored in a FIFO element while the counting is performed. At the end, this will
contain all the z and y coordinates needed for the average calculation. Once
the classification flag is triggered, all the coordinates stored in the previous step
(which belong to the highest activation) are acquired for calculating the total
activation (the divisor). Subsequently, it will calculate the sum of the respective
and y values, and pass these as dividends to hardware dividers that will provide
the final coordinates of the detected object. Alg. [[lsummarizes the above object
detection hardware pipeline clearly.

5 Experiments and Discussion

5.1 Event-based Object Categorization

This section compares the proposed object categorization system to state-of-
the-art event-based works and thus software implementation is used with double
numeric precision. We validated our approach on two benchmark datasets [19],
namely the N-MNIST and N-Caltech101, that have become de-facto standards
for testing event-based categorization algorithms. Fig. [B] shows some representa-
tive samples from N-MNIST and N-Caltech101.

Parameter Settings. The time thresholds for the nearest neighbour filter and
the refractory filter are nominally set as ®,4i5¢ = 5 ms and ©,.y = 1 ms re-
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Table 1: Comparison of classification accuracy on event-based datasets (%).
N-MNIST N-Caltechl101

H-First 71.20 5.40
HOTS 80.80 21.0
Gabor-SNN 83.70 19.60
HATS 99.10 64.20
vPCA-RECT (this work) 98.72 70.25
PCA-RECT (this work)  98.95 72.30
Phased LSTM 97.30 -
Deep SNN 98.70 -

spectively, as suggested in [20]. We used a FIFO buffer size of 5000 events for
dynamically updating the count matrix as and when events are received. Sub-
sequently, the RECT representation with a 2 by 2 averaging filter without zero
padding at the boundaries is used to obtain a 9 x 9 feature vector for all event
locations. We also experimented with other feature vector dimensions using a
3 x 3,5 x5, 7 x 7 sampling region and found that increasing the context im-
proved the performance slightly. For obtaining the PCA-RECT representation,
the number of PCs can be chosen automatically by retaining the PCs that hold
95% eigenenergy of the training data, which is typically about 60 in our case.
For testing on the benchmark datasets, a dictionary size of 3000 was universally
used with a k-d tree with backtracking to find precise feature matches.

Results on the Benchmark Datasets. The results on the N-MNIST and
N-Caltech101 datasets are given in Table[Il As it is common practice, we report
the results in terms of classification accuracy. The baselines methods considered
were HATS [28], HOTS [8], HFirst [I§] and Spiking Neural Networks (SNN)
[9I15] (Gabor-SNN reported in [28]).

On the widely reported N-MNIST dataset, our method is as good as the
best performing HATS method. Moreover, other SNN methods are also in the
same ballpark, which is due to the simple texture-less digit event streams giv-
ing distinct features for most methods. Therefore, it is a good benchmark as
long as a proposed method performs in the high 90’s. A test on the challeng-
ing NCaltech-101 dataset will pave way for testing the effectiveness close to a
real-world scenario.

Our method has the highest classification rate ever reported for an event-
based classification method on the challenging N-Caltech101 dataset. The un-
published HATS work is the only comparable method in terms of accuracy, while
the other learning mechanisms fail to reach good performance. Fig. @ shows the
performance of the PCA-RECT representation as the number of PCs are varied.
It is worth noticing that just retaining five dimensions can give better perfor-
mance compared to available works.
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Fig. 4: Number of principal component dimensions vs. accuracy on N-Caltech101

Fig. 5: Dataset samples: Landing platform, UAV and Thumper (BG: Empty Floor).

5.2 Event-based Object Detection

Dataset. The datasets described in the previous section are good for only eval-
uating the categorization module. In addition, as the benchmark datasets were
generated by displaying images on a monitor with limited and predefined motion
of the camera, they do not generalize well to real-world situations. To overcome
these limitations, we created a new dataset by directly recording objects in lab
environment with a freely moving event-based sensor. The in-house dataset,
called as Neuromorphic Single Object Dataset (N-SOD), contains three objects
with samples of varying length in time (up to 20 s). The three objects to be
recognized are a thumper 6-wheel ground robot, an unmanned aerial vehicle, a
landing platform along with a background class (Fig. B)).

Results on N-SOD. For testing on the N-SOD dataset, we divide the dataset
into training and testing, with 80% temporal sequence samples per class for
training and the remaining for testing. Using the training features, a dictionary
is generated. Since the temporal sequences are of different length, for a fixed
number of events, say every 10° events, a dictionary representation is extracted
and a linear SVM classifier is trained. Similarly for testing, for every 10° events,
the dictionary representation is classified using the SVM.

Based on the above setup, an accuracy of 97.14% was obtained (Tab. [2))
with a dictionary size of 950, which resulted in a k-d tree with 10 layers. We
also experimented with lower dictionary sizes such as 150, 300, 450, etc., and the
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Table 2: Confusion Matrix (%) for the best result on the in-house N-SOD dataset.
Background LP  Thumper UAV

Background 95.4128  0.3058 3.3639 0.9174
LandingPlatform 0 99.2268 0.5155 0.2577
Thumper 0 1.9257 96.9739 1.1004
UAV 0 0 3.1884 96.8116

performance drop was insignificant (> 96%). On the other hand, using a k-d tree
with backtracking, descriptor normalization, etc., achieved close to 100% accu-
racy on offline high-performance PCs, which of course does not meet low-power
and real-time requirements. In summary, the proposed vPCA-RECT method
with a backtracking-free k-d tree implementation mildly compromises on accu-
racy to handle object detection and categorization using an event camera in
real-time.

We report the precision and recall of the detection results by ascertaining if
the mean position of the detected result is within the ground truth bounding
box. We obtained: (a) Precision - (498/727) = 0.685: The percentage of the
detections belonging to the object that overlap with the groundtruth (b) Recall
- (498/729) = 0.683: The percentage of correct detections that are retrieved by
the system. The number of “landmarks” were set to 20 in the above experiments
while similar results were obtained for values such as five and ten.

Comparison to CNN. In order to compare to state-of-the-art deep neural
networks, we recorded a similar dataset to N-SOD using a frame-based camera
and transfer learning via AlexNet classified the object images. With an equiva-
lent train/test split compared to N-SOD, perfect performance can be achieved
on the clearly captured test images, however, when we recorded a frame-based
dataset under fast motion conditions (motion blur), an accuracy of only 79.20%
was obtained. It was clear that the black UAV frame when blurred looks like the
black-stripped background and creates much confusion. This confirms the disad-
vantage of using frame-based cameras to handle unconstrained camera motion.
Note that fast camera motion leads to only an increase in data-rate for event-
based cameras and has no effect on the output. In fact, recordings of N-SOD
have significant amount of such fast motions.

FPGA Performance. The hardware implementation and performance of the
Xilinx Zynq-7020 FPGA running at 100 MHz was evaluated by direct compari-
son with the results of the algorithm’s software version in MATLAB. The time
taken for a single event to be classified for the worst possible k-d tree path
was 550 nanoseconds. The Zynq was interfaced to a down-looking DAVIS cam-
era, on-board an unmanned aerial vehicle flying under unconstrained lighting
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Table 3: Hardware utilization report for the FPGA running the proposed modules.
Utilization Available Utilization %

LuUT 18238 53200 34.28
LUTRAM 12124 17400 69.68
FF 2065 106400 1.94
BRAM 48 140 34.29
DSP 4 220 1.82
10 102 200 51.00

scenarios. We recommend viewing our submitted vided] that clearly shows the
classification/detection process better than still images.

A summary of utilization of hardware elements can be seen in Tab. Bl Due
to our low hardware requirements, the dynamic on-chip power increased only by
0.37W while the base FPGA power consumption was in the order of 3W. As a
rough comparison, FPGA-based recognition systems like [I3I6/30], which present
solutions running at equal or lower clock frequencies, consume more power than
our implementation.

6 Conclusions

We have demonstrated object detection and categorization in an energy-efficient
manner using event cameras, where the only information that is important for
the tasks is how edges move, and the event camera naturally outputs it. The
proposed PCA-RECT feature takes advantage of this sparsity to generate a
low-dimensional representation. The low-dimensional representation is further
exploited for feature matching using a k-d tree approach, capable of obtain-
ing the best performance on the challenging Neuromorphic Caltech-101 dataset
compared to state-of-the-art works. Most importantly, real-time FPGA imple-
mentation was achieved with several careful design considerations, such as a
backtracking-free k-d tree for dictionary matching, a virtual PCA-RECT repre-
sentation obtained by analyzing the k-d tree partitioning of the feature space,
etc. To the best of our knowledge, this is the first work implementing a generic
object recognition framework for event cameras on an FPGA device, verified
in a lab demo setting under unconstrained motion and lighting setup, thereby
demonstrating a high performance over resource ratio.
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