Abstract
We propose a new construction for the multiplication algorithm of D.V. and G.V. Chudnovsky in order to improve scalar algebraic complexity. In particular, we improve the Baum-Shokrollahi construction for multiplication in \(\mathbb F_{256}/\mathbb F_4\) based on the elliptic Fermat curve \(x^3+y^3=1\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atighehchi, K., Ballet, S., Bonnecaze, A., Rolland, R.: Arithmetic in finite fields based on Chudnovsky’s multiplication algorithm. Math. Comput. 86(308), 297–3000 (2017)
Ballet, S.: Curves with many points and multiplication complexity in any extension of \(\mathbb{F}_q\). Finite Fields Their Appl. 5, 364–377 (1999)
Ballet, S.: Quasi-optimal algorithms for multiplication in the extensions of \(\mathbb{F}_{16}\) of degree \(13\), \(14\), and \(15\). J. Pure Appl. Algebra 171, 149–164 (2002)
Baum, U., Shokrollahi, A.: An optimal algorithm for multiplication in \(\mathbb{F}_{256}/\mathbb{F}_4\). Appl. Algebra Eng. Commun. Comput. 2(1), 15–20 (1991)
Chaumine, J.: On the bilinear complexity of multiplication in small finite fields. Comptes Rendus de l’Académie des Sciences, Série I(343), 265–266 (2006)
Chudnovsky, D., Chudnovsky, G.: Algebraic complexities and algebraic curves over finite fields. J. Complex. 4, 285–316 (1988)
De Groote, H.: Characterization of division algebras of minimal rank and the structure of their algorithm varieties. SIAM J. Comput. 12(1), 101–117 (1983)
Pieltant, J.: Tours de corps de fonctions algébriques et rang de tenseur de la multiplication dans les corps finis. Ph.D. thesis, Université d’Aix-Marseille, Institut de Mathématiques de Luminy (2012)
Shokhrollahi, A.: Optimal algorithms for multiplication in certain finite fields using algebraic curves. SIAM J. Comput. 21(6), 1193–1198 (1992)
Stichtenoth, H.: Algebraic Function Fields and Codes. Lectures Notes in Mathematics, vol. 314. Springer, Heidelberg (1993)
Winograd, S.: On multiplication in algebraic extension fields. Theor. Comput. Sci. 8, 359–377 (1979)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Ballet, S., Bonnecaze, A., Dang, TH. (2019). On the Scalar Complexity of Chudnovsky\(^2\) Multiplication Algorithm in Finite Fields. In: Ćirić, M., Droste, M., Pin, JÉ. (eds) Algebraic Informatics. CAI 2019. Lecture Notes in Computer Science(), vol 11545. Springer, Cham. https://doi.org/10.1007/978-3-030-21363-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-21363-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-21362-6
Online ISBN: 978-3-030-21363-3
eBook Packages: Computer ScienceComputer Science (R0)