Skip to main content

On the Scalar Complexity of Chudnovsky\(^2\) Multiplication Algorithm in Finite Fields

  • Conference paper
  • First Online:
Algebraic Informatics (CAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11545))

Included in the following conference series:

Abstract

We propose a new construction for the multiplication algorithm of D.V. and G.V. Chudnovsky in order to improve scalar algebraic complexity. In particular, we improve the Baum-Shokrollahi construction for multiplication in \(\mathbb F_{256}/\mathbb F_4\) based on the elliptic Fermat curve \(x^3+y^3=1\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atighehchi, K., Ballet, S., Bonnecaze, A., Rolland, R.: Arithmetic in finite fields based on Chudnovsky’s multiplication algorithm. Math. Comput. 86(308), 297–3000 (2017)

    Article  MathSciNet  Google Scholar 

  2. Ballet, S.: Curves with many points and multiplication complexity in any extension of \(\mathbb{F}_q\). Finite Fields Their Appl. 5, 364–377 (1999)

    Article  MathSciNet  Google Scholar 

  3. Ballet, S.: Quasi-optimal algorithms for multiplication in the extensions of \(\mathbb{F}_{16}\) of degree \(13\), \(14\), and \(15\). J. Pure Appl. Algebra 171, 149–164 (2002)

    Article  MathSciNet  Google Scholar 

  4. Baum, U., Shokrollahi, A.: An optimal algorithm for multiplication in \(\mathbb{F}_{256}/\mathbb{F}_4\). Appl. Algebra Eng. Commun. Comput. 2(1), 15–20 (1991)

    Article  MathSciNet  Google Scholar 

  5. Chaumine, J.: On the bilinear complexity of multiplication in small finite fields. Comptes Rendus de l’Académie des Sciences, Série I(343), 265–266 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Chudnovsky, D., Chudnovsky, G.: Algebraic complexities and algebraic curves over finite fields. J. Complex. 4, 285–316 (1988)

    Article  MathSciNet  Google Scholar 

  7. De Groote, H.: Characterization of division algebras of minimal rank and the structure of their algorithm varieties. SIAM J. Comput. 12(1), 101–117 (1983)

    Article  MathSciNet  Google Scholar 

  8. Pieltant, J.: Tours de corps de fonctions algébriques et rang de tenseur de la multiplication dans les corps finis. Ph.D. thesis, Université d’Aix-Marseille, Institut de Mathématiques de Luminy (2012)

    Google Scholar 

  9. Shokhrollahi, A.: Optimal algorithms for multiplication in certain finite fields using algebraic curves. SIAM J. Comput. 21(6), 1193–1198 (1992)

    Article  MathSciNet  Google Scholar 

  10. Stichtenoth, H.: Algebraic Function Fields and Codes. Lectures Notes in Mathematics, vol. 314. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  11. Winograd, S.: On multiplication in algebraic extension fields. Theor. Comput. Sci. 8, 359–377 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Hung Dang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ballet, S., Bonnecaze, A., Dang, TH. (2019). On the Scalar Complexity of Chudnovsky\(^2\) Multiplication Algorithm in Finite Fields. In: Ćirić, M., Droste, M., Pin, JÉ. (eds) Algebraic Informatics. CAI 2019. Lecture Notes in Computer Science(), vol 11545. Springer, Cham. https://doi.org/10.1007/978-3-030-21363-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21363-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21362-6

  • Online ISBN: 978-3-030-21363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics