Skip to main content

Groupoids and Wreath Products of Musical Transformations: A Categorical Approach from poly-Klumpenhouwer Networks

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2019)

Abstract

Klumpenhouwer networks (K-nets) and their recent categorical generalization, poly-Klumpenhouwer networks (PK-nets), are network structures allowing both the analysis of musical objects through the study of the transformations between their constituents, and the comparison of these objects between them. In this work, we propose a groupoid-based approach to transformational music theory, in which transformations of PK-nets are considered rather than ordinary sets of musical objects. We show how groupoids of musical transformations can be constructed, and provide an application of their use in post-tonal music analysis with Berg’s Four pieces for clarinet and piano, Op. 5/2. In a second part, we show how these groupoids are linked to wreath products through the notion of groupoid bisections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ehresmann, C.: Catégories topologiques et catégories différentiables. In: Colloque de Géométrie Différentielle Globale. C.B.R.M. pp. 137–150. Librairie Universitaire, Louvain (1959)

    Google Scholar 

  2. Ehresmann, C.: Categories topologiques. iii. Indagationes Mathematicae (Proceedings) 69, 161–175 (1966). https://doi.org/10.1016/S1385-7258(66)50023-3

    Article  MathSciNet  MATH  Google Scholar 

  3. Fiore, T.M., Noll, T.: Commuting groups and the topos of triads. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS (LNAI), vol. 6726, pp. 69–83. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21590-2_6

    Chapter  MATH  Google Scholar 

  4. Hook, J.: Uniform triadic transformations. J. Music Theory 46(1/2), 57–126 (2002). http://www.jstor.org/stable/4147678

    Article  Google Scholar 

  5. Klumpenhouwer, H.: A Generalized Model of Voice-Leading for Atonal Music. Ph.D. thesis, Harvard University (1991)

    Google Scholar 

  6. Klumpenhouwer, H.: The inner and outer automorphisms of pitch-class inversion and transposition: some implications for analysis with Klumpenhouwer networks. Intégral 12, 81–93 (1998). http://www.jstor.org/stable/40213985

    Google Scholar 

  7. Lewin, D.: Transformational techniques in atonal and other music theories. Persp. New Music 21(1–2), 312–381 (1982)

    Article  Google Scholar 

  8. Lewin, D.: Generalized Music Intervals and Transformations. Yale University Press (1987)

    Google Scholar 

  9. Lewin, D.: Klumpenhouwer networks and some isographies that involve them. Music Theory Spectr. 12(1), 83–120 (1990)

    Article  Google Scholar 

  10. Mackenzie, K.C.: General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, vol. 213. Cambridge University Press (2005). http://www.ams.org/mathscinet-getitem?mr=2157566

  11. Mazzola, G., Andreatta, M.: From a categorical point of view: K-nets as limit denotators. Persp. New Music 44(2), 88–113 (2006). http://www.jstor.org/stable/25164629

    Google Scholar 

  12. Nolan, C.: Thoughts on Klumpenhouwer networks and mathematical models: the synergy of sets and graphs. Music Theory Online 13(3) (2007)

    Google Scholar 

  13. Peck, R.: Generalized commuting groups. J. Music Theory 54(2), 143–177 (2010). http://www.jstor.org/stable/41300116

    Article  Google Scholar 

  14. Peck, R.W.: Wreath products in transformational music theory. Persp. New Music 47(1), 193–210 (2009). http://www.jstor.org/stable/25652406

    MathSciNet  Google Scholar 

  15. Popoff, A.: Opycleid: a Python package for transformational music theory. J. Open Source Softw. 3(32), 981 (2018). https://doi.org/10.21105/joss.00981

    Article  Google Scholar 

  16. Popoff, A., Agon, C., Andreatta, M., Ehresmann, A.: From K-nets to PK-nets: a categorical approach. Persp. New Music 54(2), 5–63 (2016). http://www.jstor.org/stable/10.7757/persnewmusi.54.2.0005

    Google Scholar 

  17. Popoff, A., Andreatta, M., Ehresmann, A.: A categorical generalization of Klumpenhouwer networks. In: Collins, T., Meredith, D., Volk, A. (eds.) MCM 2015. LNCS (LNAI), vol. 9110, pp. 303–314. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20603-5_31

    Chapter  Google Scholar 

  18. Popoff, A., Andreatta, M., Ehresmann, A.: Relational poly-Klumpenhouwer networks for transformational and voice-leading analysis. J. Math. Music 12(1), 35–55 (2018). https://doi.org/10.1080/17459737.2017.1406011

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Popoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Popoff, A., Andreatta, M., Ehresmann, A. (2019). Groupoids and Wreath Products of Musical Transformations: A Categorical Approach from poly-Klumpenhouwer Networks. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds) Mathematics and Computation in Music. MCM 2019. Lecture Notes in Computer Science(), vol 11502. Springer, Cham. https://doi.org/10.1007/978-3-030-21392-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21392-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21391-6

  • Online ISBN: 978-3-030-21392-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics