Abstract
Klumpenhouwer networks (K-nets) and their recent categorical generalization, poly-Klumpenhouwer networks (PK-nets), are network structures allowing both the analysis of musical objects through the study of the transformations between their constituents, and the comparison of these objects between them. In this work, we propose a groupoid-based approach to transformational music theory, in which transformations of PK-nets are considered rather than ordinary sets of musical objects. We show how groupoids of musical transformations can be constructed, and provide an application of their use in post-tonal music analysis with Berg’s Four pieces for clarinet and piano, Op. 5/2. In a second part, we show how these groupoids are linked to wreath products through the notion of groupoid bisections.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ehresmann, C.: Catégories topologiques et catégories différentiables. In: Colloque de Géométrie Différentielle Globale. C.B.R.M. pp. 137–150. Librairie Universitaire, Louvain (1959)
Ehresmann, C.: Categories topologiques. iii. Indagationes Mathematicae (Proceedings) 69, 161–175 (1966). https://doi.org/10.1016/S1385-7258(66)50023-3
Fiore, T.M., Noll, T.: Commuting groups and the topos of triads. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS (LNAI), vol. 6726, pp. 69–83. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21590-2_6
Hook, J.: Uniform triadic transformations. J. Music Theory 46(1/2), 57–126 (2002). http://www.jstor.org/stable/4147678
Klumpenhouwer, H.: A Generalized Model of Voice-Leading for Atonal Music. Ph.D. thesis, Harvard University (1991)
Klumpenhouwer, H.: The inner and outer automorphisms of pitch-class inversion and transposition: some implications for analysis with Klumpenhouwer networks. Intégral 12, 81–93 (1998). http://www.jstor.org/stable/40213985
Lewin, D.: Transformational techniques in atonal and other music theories. Persp. New Music 21(1–2), 312–381 (1982)
Lewin, D.: Generalized Music Intervals and Transformations. Yale University Press (1987)
Lewin, D.: Klumpenhouwer networks and some isographies that involve them. Music Theory Spectr. 12(1), 83–120 (1990)
Mackenzie, K.C.: General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, vol. 213. Cambridge University Press (2005). http://www.ams.org/mathscinet-getitem?mr=2157566
Mazzola, G., Andreatta, M.: From a categorical point of view: K-nets as limit denotators. Persp. New Music 44(2), 88–113 (2006). http://www.jstor.org/stable/25164629
Nolan, C.: Thoughts on Klumpenhouwer networks and mathematical models: the synergy of sets and graphs. Music Theory Online 13(3) (2007)
Peck, R.: Generalized commuting groups. J. Music Theory 54(2), 143–177 (2010). http://www.jstor.org/stable/41300116
Peck, R.W.: Wreath products in transformational music theory. Persp. New Music 47(1), 193–210 (2009). http://www.jstor.org/stable/25652406
Popoff, A.: Opycleid: a Python package for transformational music theory. J. Open Source Softw. 3(32), 981 (2018). https://doi.org/10.21105/joss.00981
Popoff, A., Agon, C., Andreatta, M., Ehresmann, A.: From K-nets to PK-nets: a categorical approach. Persp. New Music 54(2), 5–63 (2016). http://www.jstor.org/stable/10.7757/persnewmusi.54.2.0005
Popoff, A., Andreatta, M., Ehresmann, A.: A categorical generalization of Klumpenhouwer networks. In: Collins, T., Meredith, D., Volk, A. (eds.) MCM 2015. LNCS (LNAI), vol. 9110, pp. 303–314. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20603-5_31
Popoff, A., Andreatta, M., Ehresmann, A.: Relational poly-Klumpenhouwer networks for transformational and voice-leading analysis. J. Math. Music 12(1), 35–55 (2018). https://doi.org/10.1080/17459737.2017.1406011
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Popoff, A., Andreatta, M., Ehresmann, A. (2019). Groupoids and Wreath Products of Musical Transformations: A Categorical Approach from poly-Klumpenhouwer Networks. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds) Mathematics and Computation in Music. MCM 2019. Lecture Notes in Computer Science(), vol 11502. Springer, Cham. https://doi.org/10.1007/978-3-030-21392-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-21392-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-21391-6
Online ISBN: 978-3-030-21392-3
eBook Packages: Computer ScienceComputer Science (R0)