Skip to main content

Embedding RCC8D in the Collective Spatial Logic CSLCS

  • Chapter
  • First Online:
Models, Languages, and Tools for Concurrent and Distributed Programming

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11665))

Abstract

Discrete mereotopology is a logical theory for the specification of qualitative spatial functions and relations defined over a discrete space, intended as a set of basic elements, the pixels, with an adjacency relation defined over it. The notions of interest are that of region, intended as an arbitrary aggregate of pixels, and of specific relations between regions. The mereotopological theory RCC8D extends the mereological theory RCC5D—a theory of region parthood for discrete spaces—with the topological notion of connection and the remaining relations (disconnection, external connection, tangential and nontangential proper parthood and their inverses). In this paper, we propose an encoding of RCC8D into CSLCS, the collective extension of the Spatial Logic of Closure Spaces SLCS. We show how topochecker, a model-checker for CSLCS, can be used for effectively checking the existence of a RCC8D relation between two given regions of a discrete space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Topochecker: a topological model checker, see http://topochecker.isti.cnr.it, https://github.com/vincenzoml/topochecker.

  2. 2.

    Note that this colour does not correspond to any atomic predicate and so it is not part of the model; we use it only for illustration purposes.

  3. 3.

    It is trivial to prove that, for quasi-discrete closure space \((X,\mathcal {C}_{R})\), whenever \(R\) is symmetric, if \(B \subseteq \mathcal {C}_{R}(A)\) then \(\mathcal {C}_{R}(B) \cap A \not =\emptyset \), for all non-empty \(A,B \subseteq X\).

  4. 4.

    See http://www.ocaml.org.

  5. 5.

    In the remainder of this section, we employ the syntax of topochecker, using & for conjunction, | for disjunction, ! for negation, for the “share” connective, and Gr for the “group” connective.

  6. 6.

    This may change in a future release of the model checker.

References

  1. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4

    Book  MATH  Google Scholar 

  2. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial logics and model checking for medical imaging. Int. J. Softw. Tools Technol. Transf. (2019). https://doi.org/10.1007/s10009-019-00511-9

  3. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: From collective adaptive systems to human centric computation and back: spatial model checking for medical imaging. In: ter Beek, M.H., Loreti, M. (eds.) Proceedings of the Workshop on FORmal Methods for the Quantitative Evaluation of Collective Adaptive SysTems, FORECAST@STAF 2016, Vienna, Austria, 8 July 2016. EPTCS, vol. 217, pp. 81–92 (2016). https://doi.org/10.4204/EPTCS.217.10

    Article  Google Scholar 

  4. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA: A Spatial Model Checker for Declarative Image Analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 281–298. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_16. http://arxiv.org/abs/1811.05677

    Chapter  Google Scholar 

  5. Bennett, B., Düntsch, I.: Axioms, algebras and topology. In: Springer [1], pp. 99–159

    Chapter  Google Scholar 

  6. Binchi, J., Merelli, E., Rucco, M., Petri, G., Vaccarino, F.: jHoles: a tool for understanding biological complex networks via clique weight rank persistent homology. Electr. Notes Theor. Comput. Sci. 306, 5–18 (2014). https://doi.org/10.1016/j.entcs.2014.06.011

    Article  MathSciNet  MATH  Google Scholar 

  7. Buti, F., Cacciagrano, D., Corradini, F., Merelli, E., Tesei, L., Pani, M.: Bone remodelling in BioShape. Electr. Notes Theor. Comput. Sci. 268, 17–29 (2010). https://doi.org/10.1016/j.entcs.2010.12.003

    Article  MathSciNet  MATH  Google Scholar 

  8. Buti, F., Cacciagrano, D., Callisto De Donato, M., Corradini, F., Merelli, E., Tesei, L.: \(BioShape\): end-user development for simulating biological systems. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A. (eds.) IS-EUD 2011. LNCS, vol. 6654, pp. 379–382. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21530-8_45

    Chapter  Google Scholar 

  9. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 222–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44602-7_18

    Chapter  Google Scholar 

  10. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for closure spaces. Logical Methods Comput. Sci. 12(4) (2016). http://lmcs.episciences.org/2067

  11. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-temporal model checking of vehicular movement in public transport systems. STTT 20(3), 289–311 (2018). https://doi.org/10.1007/s10009-018-0483-8

    Article  Google Scholar 

  12. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Spatial logic and spatial model checking for closure spaces. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 156–201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34096-8_6

    Chapter  MATH  Google Scholar 

  13. Ciancia, V., Latella, D., Massink, M., Paskauskas, R.: Exploring spatio-temporal properties of bike-sharing systems. In: 2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, SASO Workshops 2015, Cambridge, MA, USA, 21–25 September 2015, pp. 74–79. IEEE Computer Society (2015). https://doi.org/10.1109/SASOW.2015.17

  14. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for statistical spatio-temporal model checking of bike sharing systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_46

    Chapter  Google Scholar 

  15. Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48384-5_17

    Chapter  Google Scholar 

  16. Galton, A.: A generalized topological view of motion in discrete space. Theor. Comput. Sci. 305(1–3), 111–134 (2003). https://doi.org/10.1016/S0304-3975(02)00701-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W.R. (eds.) Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR 1992), Cambridge, MA, USA, 25–29 October 1992, pp. 165–176. Morgan Kaufmann (1992)

    Google Scholar 

  18. Randell, D.A., Landini, G., Galton, A.: Discrete mereotopology for spatial reasoning in automated histological image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 568–581 (2013). https://doi.org/10.1109/TPAMI.2012.128

    Article  Google Scholar 

  19. Smyth, M.B., Webster, J.: Discrete spatial models. In: Springer [1], pp. 713–798

    Chapter  Google Scholar 

  20. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Springer [1], pp. 217–298

    Google Scholar 

Download references

Acknowledgements

This paper was written for the Festschrift in honour of Prof. Rocco De Nicola. We would like to thank Rocco for the many years of fruitful collaboration in the context of numerous European and Italian research projects and we are looking forward to future collaboration in the context of the new Italian MIUR PRIN project “IT MATTERS". But most of all, we are grateful for his great sense of humanity with which he dedicated part of his professional live to keep computer science research alive in areas struck by devastating earthquakes and to give a second professional chance to people from conflict areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Ciancia .

Editor information

Editors and Affiliations

A Proof of Proposition 1

A Proof of Proposition 1

Proof

We prove that, for all models \(\mathcal {M}= ((X,\mathcal {C}),\mathcal{V})\) and points \(x \in X\), the following holds:

$$ \mathcal {M}, x \not \models \varPhi _2 \, \vee \, (\varPhi _1 \, \mathcal {S}\, \varPhi _2) \text{ iff } \mathcal {M}, x \not \models A(\varPhi _1 \, \mathcal {W}\, \varPhi _2). $$

For the direct implication, we proceed as follows:

For the one but last step of the above derivation, note that: (i) \(\mathcal {M}, \pi (\ell ) \not \models \varPhi _1\) implies that \(\mathcal {M}, \pi (i) \models \varPhi _1\) for all i does not hold; and (ii) \(\mathcal {M}, \pi (j) \not \models \varPhi _2, \text{ for } \text{ all } j \text{ s.t. } 0 \le j \le \ell \) implies that, if there exists k s.t. \(\mathcal {M}, \pi (k) \models \varPhi _2\), then, it necessarily must be \(k > \ell \); but then \(\mathcal {M}, \pi \models \varPhi _1 \, \mathcal {U}\, \varPhi _2\) cannot hold because this would not allow \(\mathcal {M},\pi (\ell ) \not \models \varPhi _1\), with \(\ell < k\).

The derivation for the reverse implication is given below:

figure d

Take the minimal \(\ell \) as above. If \(\ell = 0\), then clearly \(\mathcal {M},x \not \models \varPhi _1 \mathcal {S}\varPhi _2\), by definition of \(\mathcal {S}\), and since we also have \(\mathcal {M},x \not \models \varPhi _2\), we get \(\mathcal {M},x \not \models \varPhi _2 \, \vee \,(\varPhi _1 \mathcal {S}\varPhi _2)\), i.e. the assert. If instead \(\ell > 0\), then clearly \(\mathcal {M}, \pi (j) \models \varPhi _1\) for \(0 \le j < \ell \), by minimality of \(\ell \), and since we also have \(\mathcal {M},\pi \not \models \varPhi _1 \, \mathcal {U}\, \varPhi _2\), we get \(\mathcal {M}, \pi (j) \not \models \varPhi _2\) for \(0 \le j \le \ell \). So, there exist \( \pi ,\ell \) s.t. \(\pi (0)=x\), \(\mathcal {M}, \pi (\ell )\models \lnot \varPhi _1\) and for all j, \(0 < j \le \ell \), \(\mathcal {M},\pi (j) \not \models \varPhi _2\), which, by definition of \(\mathcal {S}\), is equivalent to \(\mathcal {M},x \not \models \varPhi _1 \, \mathcal {S}\varPhi _2\). Moreover, since we also know that \(\mathcal {M},\pi (0)\not \models \varPhi _2\), we get \(\mathcal {M},x \not \models \varPhi _2 \, \vee \, (\varPhi _1 \mathcal {S}\varPhi _2)\), i.e. the assert.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ciancia, V., Latella, D., Massink, M. (2019). Embedding RCC8D in the Collective Spatial Logic CSLCS. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds) Models, Languages, and Tools for Concurrent and Distributed Programming. Lecture Notes in Computer Science(), vol 11665. Springer, Cham. https://doi.org/10.1007/978-3-030-21485-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21485-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21484-5

  • Online ISBN: 978-3-030-21485-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics