Skip to main content

\(\delta \)-subgaussian Random Variables in Cryptography

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11547))

Included in the following conference series:

Abstract

In the Ring-LWE literature, there are several works that use a statistical framework based on \(\delta \)-subgaussian random variables. These were introduced by Miccancio and Peikert (Eurocrypt 2012) as a relaxation of subgaussian random variables. In this paper, we completely characterise \(\delta \)-subgaussian random variables. In particular, we show that this relaxation from a subgaussian random variable corresponds only to the shifting of the mean. Next, we give an alternative noncentral formulation for a \(\delta \)-subgaussian random variable, which we argue is more statistically natural. This formulation enables us to extend prior results on sums of \(\delta \)-subgaussian random variables, and on their discretisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium on Theory of Computing (2013)

    Google Scholar 

  2. Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit: subgaussian sampling and more. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, 655–684. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3

    Google Scholar 

  3. Grimmett, G., Stirzaker, D.: Probability And Random Processes, 3rd edn. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  4. Kahane, J.: Propriétés locales des fonctions à séries de Fourier aléatoires. Stud. Math. 19, 1–25 (1960)

    Article  Google Scholar 

  5. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors Over Rings. IACR Cryptology ePrint Archive 2012:230 (2012)

    Google Scholar 

  6. Lyubashevsky, V., Peikert, C., Regev, O.: A Toolkit for Ring-LWE Cryptography. IACR Cryptology ePrint Archive 2013:293 (2013)

    Google Scholar 

  7. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  8. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_5

    Chapter  MATH  Google Scholar 

  9. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: Mitzenmacher, M. (ed.), 41st Annual ACM Symposium on Theory of Computing (2009)

    Google Scholar 

  10. Peikert, C.: Lattice cryptography for the Internet. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_12

    Chapter  MATH  Google Scholar 

  11. Peikert, C.: A Decade of Lattice Cryptography. IACR Cryptology ePrint Archive 2015:939 (2016)

    Google Scholar 

  12. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE for any ring and modulus. In: Hatami, H., McKenzie, P., King, V. (eds.), Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pp. 461–473 (2017)

    Google Scholar 

  13. Regev, O.: On lattices, learning with errors, random linear codes and cryptography. In: Gabow, H., Fagin, R. (eds.), 37th Annual ACM Symposium of Theory of Computing (2005)

    Google Scholar 

  14. Regev, O.: The learning with errors problem (invited survey). In: IEEE Conference on Computational Complexity, pp. 191–204 (2010)

    Google Scholar 

  15. Rivasplata, O.: Subgaussian Random Variables: An Expository Note. http://www.stat.cmu.edu/~arinaldo/36788/subgaussians.pdf (2015)

  16. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36

    Chapter  Google Scholar 

  17. Stromberg, K.R.: Probability for Analysts. Chapman and Hall (1994)

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their comments on previous versions of this paper, and we thank Carlos Cid for his interesting discussions about this paper. Rachel Player was supported by an ACE-CSR Ph.D. grant, by the French Programme d’Investissement d’Avenir under national project RISQ P141580, and by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Player .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murphy, S., Player, R. (2019). \(\delta \)-subgaussian Random Variables in Cryptography. In: Jang-Jaccard, J., Guo, F. (eds) Information Security and Privacy. ACISP 2019. Lecture Notes in Computer Science(), vol 11547. Springer, Cham. https://doi.org/10.1007/978-3-030-21548-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21548-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21547-7

  • Online ISBN: 978-3-030-21548-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics