Skip to main content

Short Lattice-Based One-out-of-Many Proofs and Applications to Ring Signatures

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11464))

Included in the following conference series:

Abstract

In this work, we construct a short one-out-of-many proof from (module) lattices, allowing one to prove knowledge of a secret associated with one of the public values in a set. The proof system builds on a combination of ideas from the efficient proposals in the discrete logarithm setting by Groth and Kohlweiss (EUROCRYPT ’15) and Bootle et al. (ESORICS ’15), can have logarithmic communication complexity in the set size and does not require a trusted setup.

Our work resolves an open problem mentioned by Libert et al. (EUROCRYPT ’16) of how to efficiently extend the above discrete logarithm proof techniques to the lattice setting. To achieve our result, we introduce new technical tools for design and analysis of algebraic lattice-based zero-knowledge proofs, which may be of independent interest.

Using our proof system as a building block, we design a short ring signature scheme, whose security relies on “post-quantum” lattice assumptions. Even for a very large ring size such as 1 billion, our ring signature size is only 3 MB for 128-bit security level compared to 216 MB in the best existing lattice-based result by Libert et al. (EUROCRYPT ’16).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are some constructions of ring signatures that give a constant size signature but require a trusted setup.

  2. 2.

    Our scheme, like [18], is only analyzed in the classical random oracle model (ROM) (rather than quantum ROM). Also, note that the linear-sized ring signature schemes are inherently long for large ring sizes.

  3. 3.

    M-SIS is used usually (e.g. in [12]) to fix the ring dimension d and to avoid the need for a change of it to accommodate new security parameters. It does not have a significant effect on efficiency due to extracted witness norm unlike in our case.

  4. 4.

    As in [3], we define M-SIS in “Hermite normal form”, which is equivalent to M-SIS with completely random \(\varvec{A}\).

  5. 5.

    We refer to Sect. 2.2 of [6] for further discussion on soundness error.

  6. 6.

    A more detailed table is available in the full version of the manuscript [14].

  7. 7.

    In protocol’s application to a ring signature (and for other applications in general), simulation of aborts is not needed as the protocol is made non-interactive.

References

  1. Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Discrete Gaussian leftover hash lemma over infinite domains. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 97–116. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_6

    Chapter  Google Scholar 

  2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

    Article  MathSciNet  Google Scholar 

  3. Baum, C., Damgård, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_20

    Chapter  Google Scholar 

  4. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable ring signatures. In: Naccache, D., et al. (eds.) ICICS 2018. LNCS, vol. 11149, pp. 303–322. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1_18

    Chapter  Google Scholar 

  5. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better zero-knowledge proofs for lattice encryption and their application to group signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_29

    Chapter  Google Scholar 

  6. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-knowledge proofs for commitments from learning with errors over rings. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 305–325. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_16

    Chapter  Google Scholar 

  7. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_13

    Chapter  Google Scholar 

  8. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

    Chapter  MATH  Google Scholar 

  9. Brickell, E., Pointcheval, D., Vaudenay, S., Yung, M.: Design validations for discrete logarithm based signature schemes. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 276–292. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46588-1_19

    Chapter  Google Scholar 

  10. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: S&P. IEEE (2018)

    Google Scholar 

  11. Chow, S.S.M., Liu, J.K., Wong, D.S.: Robust receipt-free election system with ballot secrecy and verifiability. In: NDSS. The Internet Society (2008)

    Google Scholar 

  12. del Pino, R., Lyubashevsky, V., Neven, G., Seiler, G.: Practical quantum-safe voting from lattices. In: CCS, pp. 1565–1581. ACM (2017)

    Google Scholar 

  13. del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-knowledge proofs of automorphism stability. In: CCS, pp. 574–591. ACM (2018)

    Google Scholar 

  14. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-out-of-many proofs and applications to ring signatures. Cryptology ePrint Archive, Report 2018/773 (2018). https://eprint.iacr.org/2018/773

  15. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9

    Chapter  Google Scholar 

  16. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Crypt. 75(3), 565–599 (2015)

    Article  MathSciNet  Google Scholar 

  17. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_13

    Chapter  Google Scholar 

  18. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1

    Chapter  Google Scholar 

  19. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_15

    Chapter  Google Scholar 

  20. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_28

    Chapter  Google Scholar 

  21. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  22. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 293–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_11

    Chapter  Google Scholar 

  23. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007). Preliminary version in FOCS 2004

    Google Scholar 

  24. Noether, S.: Ring signature confidential transactions for monero. Cryptology ePrint Archive, Report 2015/1098 (2015). https://eprint.iacr.org/2015/1098

  25. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory 42(6), 1757–1768 (1996)

    Article  MathSciNet  Google Scholar 

  26. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency Monero. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_25

    Chapter  Google Scholar 

  27. Alberto Torres, W.A., et al.: Post-quantum one-time linkable ring signature and application to ring confidential transactions in blockchain (lattice ringCT v1.0). In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 558–576. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_32

    Chapter  Google Scholar 

  28. Turner, L.R.: Inverse of the Vandermonde matrix with applications. Technical report NASA-TN-D-3547, Lewis Research Center, NASA (1966)

    Google Scholar 

  29. Zhang, H., Zhang, F., Tian, H., Au, M.H.: Anonymous post-quantum cryptocash. Cryptology ePrint Archive, Report 2017/716 (2017). https://eprint.iacr.org/2017/716 (To appear in FC 2018)

Download references

Acknowledgements

The work of Ron Steinfeld and Amin Sakzad was supported in part by ARC grant DP150100285. Ron Steinfeld and Joseph K. Liu were also supported in part by ARC grant DP180102199.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed F. Esgin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D. (2019). Short Lattice-Based One-out-of-Many Proofs and Applications to Ring Signatures. In: Deng, R., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds) Applied Cryptography and Network Security. ACNS 2019. Lecture Notes in Computer Science(), vol 11464. Springer, Cham. https://doi.org/10.1007/978-3-030-21568-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21568-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21567-5

  • Online ISBN: 978-3-030-21568-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics