Skip to main content

Stochastic Tunneling for Improving the Efficiency of Stochastic Efficient Global Optimization

  • Conference paper
  • First Online:
Optimization of Complex Systems: Theory, Models, Algorithms and Applications (WCGO 2019)

Abstract

This paper proposes the use of a normalization scheme for increasing the performance of the recently developed Adaptive Target Variance Stochastic Efficient Global Optimization (sEGO) method. Such a method is designed for the minimization of functions that depend on expensive to evaluate and high dimensional integrals. The results showed that the use of the normalization in the sEGO method yielded very promising results for the minimization of integrals. Indeed, it was able to obtain more precise results, while requiring only a fraction of the computational budget of the original version of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ankenman, B., Nelson, B.L., Staum, J.: Stochastic kriging for simulation metamodeling. Oper. Res. 58(2), 371–382 (2010)

    Google Scholar 

  2. Beck, A.T., Kougioumtzoglou, I.A., dos Santos, K.R.M.: Optimal performance-based design of non-linear stochastic dynamical rc structures subject to stationary wind excitation. Eng. Struct. 78, 145–153 (2014)

    Google Scholar 

  3. Beck, J., Dia, B.M., Espath, L.F.R., Long, Q., Tempone, R.: Fast Bayesian experimental design: laplace-based importance sampling for the expected information gain. Comput. Methods Appl. Mech. Eng. 334, 523–553 (2018). https://doi.org/10.1016/j.cma.2018.01.053

    Google Scholar 

  4. Carraro, F., Lopez, R.H., Miguel, L.F.F., Andre J.T.: Optimum design of planar steel frames using the search group algorithm. Struct. Multidiscip. Optim. (2019) (p. to appear)

    Google Scholar 

  5. Forrester, A., Sobester, A., Keane, A.: Engineering Design Via Surrogate Modelling: A Practical Guide. Wiley, Chichester (2008)

    Google Scholar 

  6. Gomes, W.J., Beck, A.T., Lopez, R.H., Miguel, L.F.: A probabilistic metric for comparing metaheuristic optimization algorithms. Struct. Saf. 70, 59–70 (2018)

    Google Scholar 

  7. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global optimization of stochastic black-box systems via sequential kriging meta-models. J. Glob. Optim. 34(3), 441–466 (2006)

    Google Scholar 

  8. Jalali, H., Nieuwenhuyse, I.V., Picheny, V.: Comparison of kriging-based algorithms for simulation optimization with heterogeneous noise. Eur. J. Oper. Res. 261(1), 279–301 (2017). https://doi.org/10.1016/j.ejor.2017.01.035

    Google Scholar 

  9. Jones, D.R., Schonlau, M., William, J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998). https://doi.org/10.1023/a:1008306431147

    Google Scholar 

  10. Lopez, R., Ritto, T., Sampaio, R., de Cursi, J.S.: A new algorithm for the robust optimization of rotor-bearing systems. Eng. Optim. 46(8), 1123–1138 (2014). https://doi.org/10.1080/0305215X.2013.819095

    Google Scholar 

  11. Picheny, V., Wagner, T., Ginsbourger, D.: A benchmark of kriging-based infill criteria for noisy optimization. Struct. Multidiscip. Optim. 48(3), 607–626 (2013)

    Google Scholar 

  12. Wenzel, W., Hamacher, K.: Stochastic tunneling approach for global minimization of complex potential energy landscapes. Phys. Rev. Lett. 82, 3003–3007 (1999). https://doi.org/10.1103/PhysRevLett.82.3003, https://link.aps.org/doi/10.1103/PhysRevLett.82.3003

Download references

Acknowledgements

The authors acknowledge the financial support and thank the Brazilian research funding agencies CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Holdorf Lopez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nascentes, F., Holdorf Lopez, R., Sampaio, R., de Cursi, E.S. (2020). Stochastic Tunneling for Improving the Efficiency of Stochastic Efficient Global Optimization. In: Le Thi, H., Le, H., Pham Dinh, T. (eds) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems and Computing, vol 991. Springer, Cham. https://doi.org/10.1007/978-3-030-21803-4_25

Download citation

Publish with us

Policies and ethics