Skip to main content

Low-Rank Matrix Recovery with Ky Fan 2-k-Norm

  • Conference paper
  • First Online:
Optimization of Complex Systems: Theory, Models, Algorithms and Applications (WCGO 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 991))

Included in the following conference series:

  • 1968 Accesses

Abstract

We propose Ky Fan 2-k-norm-based models for the non-convex low-rank matrix recovery problem. A general difference of convex algorithm (DCA) is developed to solve these models. Numerical results show that the proposed models achieve high recoverability rates.

This work is partially supported by the Alan Turing Fellowship of the first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Argyriou, A., Foygel, R., Srebro, N.: Sparse prediction with the \(k\)-support norm. In: NIPS, pp. 1466–1474 (2012)

    Google Scholar 

  2. Bhatia, R.: Matrix Analysis, Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)

    Google Scholar 

  3. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Google Scholar 

  4. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Google Scholar 

  5. Doan, X.V., Vavasis, S.: Finding the largest low-rank clusters with Ky Fan \(2\)-\(k\)-norm and \(\ell _1\)-norm. SIAM J. Optim. 26(1), 274–312 (2016)

    Google Scholar 

  6. Giraud, C.: Low rank multivariate regression. Electron. J. Stat. 5, 775–799 (2011)

    Google Scholar 

  7. Jacob, L., Bach, F., Vert, J.P.: Clustered multi-task learning: a convex formulation. NIPS 21, 745–752 (2009)

    Google Scholar 

  8. Ma, T.H., Lou, Y., Huang, T.Z.: Truncated \(\ell _{1-2}\) models for sparse recovery and rank minimization. SIAM J. Imaging Sci. 10(3), 1346–1380 (2017)

    Google Scholar 

  9. Pham, D.T., Hoai An, L.T.: Convex analysis approach to dc programming: theory, algorithms and applications. Acta Mathematica Vietnamica 22(1), 289–355 (1997)

    Google Scholar 

  10. Pham, D.T., Hoai An, L.T.: A dc optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)

    Google Scholar 

  11. Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Google Scholar 

  12. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3-a MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11(1–4), 545–581 (1999)

    Google Scholar 

  13. Yin, P., Esser, E., Xin, J.: Ratio and difference of \(\ell _1\) and \(\ell _2\) norms and sparse representation with coherent dictionaries. Commun. Inf. Syst. 14(2), 87–109 (2014)

    Google Scholar 

  14. Yin, P., Lou, Y., He, Q., Xin, J.: Minimization of \(\ell _1-\ell _2\) for compressed sensing. SIAM J. Sci. Comput. 37(1), A536–A563 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Vinh Doan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doan, X.V., Vavasis, S. (2020). Low-Rank Matrix Recovery with Ky Fan 2-k-Norm. In: Le Thi, H., Le, H., Pham Dinh, T. (eds) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems and Computing, vol 991. Springer, Cham. https://doi.org/10.1007/978-3-030-21803-4_32

Download citation

Publish with us

Policies and ethics