Skip to main content

Information Transmission and Nonspecificity in Feature Selection

  • Conference paper
  • First Online:
Fuzzy Techniques: Theory and Applications (IFSA/NAFIPS 2019 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1000))

Included in the following conference series:

  • 665 Accesses

Abstract

In this paper we propose a novel feature selection method which is based on fuzzy measures. More specifically, we apply a similarity measure to form similarity matrices from the data and apply nonspecificity on similarity degrees in order to conduct feature selection. To measure how relevant a particular feature is, we apply an information transmission measure. We exemplify our method on a simple artificial case to demonstrate its ability to select informative features. Moreover, we test our method on two real world data sets, the chronic kidney disease and the diabetic retinopathy Debrecen dataset. The nonspecificity-based feature selection method leads for both datasets to improvements in the mean classification performance. In comparison with the popular ReliefF algorithm and the Fisher Score, the new method reaches competitive results and also accomplishes the highest mean accuracy for both datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antal, B., Hajdu, A.: Diabetic retinopathy debrecen data set (2014). https://archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+Debrecen+Data+Set

  2. Bandemer, H., Näther, W.: Fuzzy Data Analysis. Kluwer Academic Publishing, Norwell (1992)

    Chapter  Google Scholar 

  3. Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97, 245–271 (1997)

    Article  MathSciNet  Google Scholar 

  4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Hoboken (2012)

    Google Scholar 

  5. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(2), 179–188 (1936)

    Article  Google Scholar 

  6. Hartley, R.V.L.: Transmission of information. Bell Syst. Tech. J. 8(3), 535–563 (1928)

    Article  Google Scholar 

  7. Jolliffe, I.: Principal Component Analysis. Springer, Heidelberg (1986)

    Book  Google Scholar 

  8. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of the Ninth International Workshop on Machine Learning (1992). https://doi.org/10.1016/S0031-3203(01)00046-2

    Article  Google Scholar 

  9. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice Hall, Upper Saddle River (1995)

    Google Scholar 

  10. Kononenko, I., Simec, E., Robnik-Sikonja, M.: Overcoming the myopia of inductive learning Algorithms with RELIEFF. Appl. Intell. 7, 39–55 (1997)

    Article  Google Scholar 

  11. Lichman, M.: UCI Machine Learning Repository (2013). Accessed 5 Nov 2018. http://archive.ics.uci.edu/ml

  12. Lohrmann, C., Luukka, P., Jablonska-Sabuka, M., Kauranne, T.: A combination of fuzzy similarity measures and fuzzy entropy measures for supervised feature selection. Expert Syst. Appl. 110, 216–236 (2018)

    Article  Google Scholar 

  13. Łukasiewicz, J.: Selected Work. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  14. Luukka, P.: Feature selection using fuzzy entropy measures with similarity classifiers. Expert Syst. Appl. 38, 4600–4607 (2011)

    Article  Google Scholar 

  15. Luukka, P., Saastamoinen, K., Könönen, V.: A classifier based on the maximal fuzzy similarity in the generalized Łukasiewicz-structure. In: Proceedings of 10th IEEE International Conference on Fuzzy Systems (2001)

    Google Scholar 

  16. McLachlan, G.J.: Discriminant Analysis and Statistical Pattern Recognition. Wiley Interscience (2004)

    Google Scholar 

  17. Robnik-Sikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 53(1–2), 23–69 (2003). https://doi.org/10.1023/A:1025667309714

    Article  MATH  Google Scholar 

  18. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  19. Soundarapandian, P., Rubini, L.: Chronic Kidney Disease Data Set (2015)

    Google Scholar 

  20. Vergara, J.R., Estevez, P.A.: A review of feature selection methods based on mutual information. Neural Comput. Appl. 24, 175–186 (2014)

    Article  Google Scholar 

  21. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  22. Zadeh, L.: Similarity relations and fuzzy orderings. Inf. Sci. 3(1), 177–200 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasi Luukka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luukka, P., Lohrmann, C. (2019). Information Transmission and Nonspecificity in Feature Selection. In: Kearfott, R., Batyrshin, I., Reformat, M., Ceberio, M., Kreinovich, V. (eds) Fuzzy Techniques: Theory and Applications. IFSA/NAFIPS 2019 2019. Advances in Intelligent Systems and Computing, vol 1000. Springer, Cham. https://doi.org/10.1007/978-3-030-21920-8_31

Download citation

Publish with us

Policies and ethics