Abstract
Distributed denial of service (DDoS) attack is one of the biggest challenges faced by the Internet community today. DDoS attack attempts to disrupt the availability of resources to the legitimate users by overwhelming the network and server resources. In this chapter, we discuss the importance of cooperative mechanisms over the centralised ones and various existing cooperative techniques to defend against DDoS attack. We also discuss their major drawbacks. The major disadvantage of centralised defence mechanism is single point of failure when the central kingpin node itself comes under attack. What we realise is that although these techniques have been developed, they are rarely deployed in the real world because the researchers have long ignored the economic incentive part in the working of cooperative DDoS mechanisms. Due to lack of incremental payment structures, the cooperation between the nodes fails. Sometimes the payment structures are non-existent, and in some cases, the payment structure is in place, but the incentives are not lucrative enough for the nodes to share their resources. The DDoS attack scenario can be divided into attack phase, detection phase and response phase. When the attacker machines perform in cooperation, then for the defence mechanism to be strong, it should also be in cooperation. This work gives an overview of the existing cooperative defence mechanisms at different layers of the Open Systems Interconnection (OSI) model and an overview of mechanism using third party for any of these three phases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zargar, S. T., Joshi, J., & Tipper, D. (2013). A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE Communications Surveys & Tutorials, 15(4), 2046–2069.
Srivastava, A., Gupta, B. B., Tyagi, A., Sharma, A., & Mishra, A. (2011). A recent survey on DDoS attacks and defense mechanisms. In Advances in parallel distributed computing (pp. 570–580). Berlin: Springer.
Mirkovic, J., & Reiher, P. (2004). A taxonomy of DDoS attack and DDoS defense mechanisms. ACM SIGCOMM Computer Communication Review, 34(2), 39–53.
Xu, K., Zhang, Z.-L., & Bhattacharyya, S. (2005). Reducing unwanted traffic in a backbone network. In Steps to reducing unwanted traffic on the internet workshop (SRUTI) (p. 915). Berkeley, CA: USENIX Association.
CERT Coordination Center. (2007, March). Denial of service attacks. Retrieved from http://www.cert.org/techtips/denialofservice.html
Garber, L. (2000). Denial-of-service attacks rip the internet. Computer, 33(4), 12–17.
CERT Coordination Center. (2007, March). CERT advisory CA-98.01 smurf IP denial-of- service attacks. Retrieved from http://www.cert.org/advisories/CA-1998-01.html
Liu, X., Li, A., Yang, X., & Wetherall, D. (2008). Passport: Secure and adoptable source authentication. Renton, WA: USENIX.
Argyraki, K., & Cheriton, D. R. (2009). Scalable network-layer defense against internet bandwidth-flooding attacks. IEEE/ACM Transactions on Networking (ToN), 17(4), 1284–1297.
Liu, X., Yang, X., & Lu, Y. (2008). To filter or to authorize: Network-layer DoS defense against multimillion-node botnets. In ACM SIGCOMM computer communication review (Vol. 38(4), pp. 195–206). New York: ACM.
Retrieved March 21, 2018, from https://www.calyptix.com/top-threats/ddos-attacks-101-types-targets-motivations/
Retrieved March 21, 2018, from https://www.akamai.com/us/en/about/news/press/2017-press/akamai-releases-third-quarter-2017-state-of-the-internet-security-report.jsp
Molsa, J. (2006). Mitigating denial of service attacks in computer networks. PhD thesis, Helsinki University of Technology, Espoo, Finland.
Specht, S. M., & Lee, R. B. (2004). Distributed denial of service: Taxonomies of attacks, tools, and countermeasures. In ISCA PDCS (pp. 543–550).
Paxson, V. (2001). An analysis of using reflectors for distributed denial-of-service attacks. ACM SIGCOMM Computer Communication Review, 31(3), 38–47.
Chang, R. K. (2002). Defending against flooding-based distributed denial-of-service attacks: A tutorial. IEEE Communications Magazine, 40(10), 42–51.
CERT Coordination Center. (2007). CERT advisory CA-98.01 smurf IP denial-of-service attacks. Retrieved March, 2007, from http://www.cert.org/advisories/CA-1998.01.html
Mölsä, J. (2006). Mitigating denial of service attacks in computer networks. Espoo: Helsinki University of Technology.
Zargar, S. T., Joshi, J., & Tipper, D. (2013). A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE Communications Surveys & Tutorials, 15(4), 2046–2069.
Chen, R., & Park, J. M. (2005). Attack diagnosis: Throttling distributed denial-of-service attacks close to the attack sources. In Proceedings of the 14th International Conference on Computer Communications and Networks, ICCCN 2005 (pp. 275–280). Piscataway, NJ: IEEE.
Chen, R., Park, J. M., & Marchany, R. (2006). TRACK: A novel approach for defending against distributed denial-of-service attacks. In Technical Report TR ECE—O6–02. Blacksburg, VA: Department of Electrical and Computer Engineering, Virginia Tech.
Papadopoulos, C., Lindell, R., Mehringer, J., Hussain, A., & Govindan, R. (2003). Cossack: Coordinated suppression of simultaneous attacks. In Proceedings: DARPA information survivability conference and exposition, 2003 (Vol. 1, pp. 2–13). Los Alamitos, CA: IEEE.
Anderson, T., Roscoe, T., & Wetherall, D. (2004). Preventing internet denial-of-service with capabilities. ACM SIGCOMM Computer Communication Review, 34(1), 39–44.
Argyraki, K., & Cheriton, D. R. (2009). Scalable network-layer defense against internet bandwidth-flooding attacks. IEEE/ACM Transactions on Networking (ToN), 17(4), 1284–1297.
Liu, X., Yang, X., & Lu, Y. (2008). To filter or to authorize: Network-layer DoS defense against multimillion-node botnets. In ACM SIGCOMM Computer Communication Review (Vol. 38(4), pp. 195–206). New York: ACM.
Walfish, M., Vutukuru, M., Balakrishnan, H., Karger, D., Karger, D., & Shenker, S. (2006). DDoS defense by offense. In ACM SIGCOMM Computer Communication Review (Vol. 36(4), pp. 303–314). New York: ACM.
Yu, J., Li, Z., Chen, H., & Chen, X. (2007). A detection and offense mechanism to defend against application layer DDoS attacks. In Third International Conference on Networking and Services, 2007. ICNS (pp. 54–54). Piscataway, NJ: IEEE.
Mahajan, R., Bellovin, S. M., Floyd, S., Ioannidis, J., Paxson, V., & Shenker, S. (2002). Controlling high bandwidth aggregates in the network. ACM SIGCOMM Computer Communication Review, 32(3), 62–73.
Mirkovic, J., Robinson, M., & Reiher, P. (2003). Alliance formation for DDoS defense. In Proceedings of the 2003 workshop on New security paradigms (pp. 11–18). New York: ACM.
Li, A., Yang, X., & Wetherall, D. (2008). Passport: Secure and adoptable source authentication. Renton, WA: USENIX.
Kandula, S., Katabi, D., Jacob, M., & Berger, A. (2005). Botz-4-sale: Surviving organized DDoS attacks that mimic flash crowds. In Proceedings of the 2nd conference on Symposium on Networked Systems Design & Implementation-Volume 2 (pp. 287–300). Berkeley, CA: USENIX Association.
Srivatsa, M., Iyengar, A., Yin, J., & Liu, L. (2008). Mitigating application-level denial of service attacks on Web servers: A client-transparent approach. ACM Transactions on the Web (TWEB), 2(3), 15.
Hussain, A., Schwab, S., Thomas, R., Fahmy, S., & Mirkovic, J. (2006, June). DDoS experiment methodology. In Proceedings of DETER Community Workshop (pp. 8–14).
Ko, C., Hussain, A., Schwab, S., Thomas, R., & Wilson, B. (2006, June). Towards systematic IDS evaluation. In Proceedings of DETER Community Workshop (pp. 20–23).
Feibel, W. (2000). The network press encyclopedia of networking. San Francisco, CA: Sybex.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Gulihar, P., Gupta, B.B. (2020). Cooperative Mechanisms for Defending Distributed Denial of Service (DDoS) Attacks. In: Gupta, B., Perez, G., Agrawal, D., Gupta, D. (eds) Handbook of Computer Networks and Cyber Security. Springer, Cham. https://doi.org/10.1007/978-3-030-22277-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-22277-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22276-5
Online ISBN: 978-3-030-22277-2
eBook Packages: Computer ScienceComputer Science (R0)