Abstract
The SIAR platform is a six-wheeled ground robot with differential kinematic configuration and automatic width adjustment developed for the ECHORD++ Challenge on Urban Robotics: “Robots For The Inspection And The Clearance Of The Sewer Network In Cities”. This challenge proposes the development of a wireless robotic platform for long range inspection of large city sewers, which are currently not addressed by commercial solutions. SIAR leverages RGBD data for affordable and high-resolution 3D perception of its surroundings. This information is internally used for robot localization and safe navigation. Moreover, this information is also employed in high-level functionalities such as automatic defect inspection, the detection of serviceability losses and the generation of global 3D reconstructions of the environment. This chapter describes the main software and hardware architecture of the system. It also details the advances made over state-of-the-art techniques in order to take into account the particularities of this environment, i.e., localization in a GPS-denied area, navigation or communications, to name a few. Finally, the chapter presents experimental results on real sewers of Barcelona to demonstrate the reliability and suitability of the proposed solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
From Orbbec https://orbbec3d.com.
- 2.
- 3.
All the code is open-source and can be found in https://github.com/robotics-upo/siar_packages.
References
ECHORD++: Utility infrastructures and condition monitoring for sewer network. Robots for the inspection and the clearance of the sewer network in cities. http://echord.eu/public/wp-content/uploads/2015/11/20141218_Challenge-Brief_Urban_Robotics.pdf (2014)
Mirats-Tur, J., Garthwaite, W.: Robotic devices for water main in-pipe inspection: a survey. J. Field Robot., 491–508 (2010)
Walter, C., Saenz, J., Elkmann, N., Althoff, H., Kutzner, S., Stuerze, T.: Design considerations of robotic system for cleaning and inspection of large-diameter sewers. J. Field Robot. 29(1), 186–214
Ibak. http://www.ibak.de/
Geolyn. http://www.geolyn.ca/
Solo tracked robots from redzone. http://www.redzone.com/products/solo-robots/
Makro’s. Wheeled worm robot. http://www.inspector-systems.com/makro_plus.html
Purerobotics’ pipeline inspection. http://www.puretechltd.com/services/robotics/
Serviceroboter. https://www.iff.fraunhofer.de/en/business-units/robotic-systems/sewer-inspection-svm.html
Tardioli, D.: A proof-of-concept application of multi-hop robot teleoperation with online map building. In: Proceedings of the 9th IEEE International Symposium on Industrial Embedded Systems (SIES 2014), pp. 210–217. IEEE (2014)
Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) Workshop on Open Source Robotics. Kobe, Japan (2009)
Alejo, D., Caballero, F., Merino, L.: RGBD-based robot localization in sewer networks. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4070–4076 (2017)
Perez-Grau, F.J., Fabresse, F.R., Caballero, F., Viguria, A., Ollero, A.: Long-term aerial robot localization based on visual odometry and radio-based ranging. In: Proceedings of the 2016 International Conference on Unmanned Aerial Systems. Arlintong, USA (2016)
Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artif. Intell. 128(1–2), 99–141 (2001)
Papadakis, P.: Terrain traversability analysis methods for unmanned ground vehicles: a survey. Eng. Appl. Artif. Intell. 26(4), 1373–1385 (2013)
Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)
Krüsi, P., Furgale, P., Bosse, M., Siegwart, R.: Driving on point clouds: motion planning, trajectory optimization, and terrain assessment in generic nonplanar environments. J. Field Robot. 34(5), 940–984
Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots (2013). Software available at http://octomap.github.com
Grisetti, G., Kummerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based slam. IEEE Intell. Transp. Syst. Mag. 2(4), 31–43 (2010)
Perez-Grau, F., Caballero, F., Merino, L., Viguria, A.: Multi-modal mapping and localization of unmanned aerial robots based on ultra-wideband and RGB-D sensing. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017, Vancouver, BC, Canada, September 24–28, pp. 3495–3502 (2017)
Pérez-Lara, J., Caballero, F., Merino, L.: Enhanced monte carlo localization with visual place recognition for robust robot localization. J. Intell. Robot. Syst. 80, 641–656 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)
Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: 2011 IEEE International Conference on Robotics and Automation, pp. 1–4 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Alejo, D., Mier, G., Marques, C., Caballero, F., Merino, L., Alvito, P. (2020). SIAR: A Ground Robot Solution for Semi-autonomous Inspection of Visitable Sewers. In: Grau, A., Morel, Y., Puig-Pey, A., Cecchi, F. (eds) Advances in Robotics Research: From Lab to Market. Springer Tracts in Advanced Robotics, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-030-22327-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-22327-4_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22326-7
Online ISBN: 978-3-030-22327-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)