Skip to main content

Minimal Lipschitz Extensions for Vector-Valued Functions on Finite Graphs

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

This paper deals with extensions of vector-valued functions on finite graphs fulfilling distinguished minimality properties. We show that so-called \(\mathrm {lex}\) and \(L\text {-}\mathrm {lex}\) minimal extensions are actually the same and call them minimal Lipschitz extensions. We prove that the minimizers of functionals involving grouped \(\ell _p\)-norms converge to these extensions as \(p\rightarrow \infty \). Further, we examine the relation between minimal Lipschitz extensions and iterated weighted midrange filters and address their connection to \(\infty \)-Laplacians for scalar-valued functions. A convergence proof for an iterative algorithm proposed in [9] for finding the zero of the \(\infty \)-Laplacian is given.

Funding by the DFG within the Research Training Group 1932, and within project STE 571/13-1 is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bačák, M.: Convex Analysis and Optimization in Hadamard Spaces. De Gruyter Series in Nonlinear Analysis and Applications, vol. 22. De Gruyter, Berlin (2014)

    Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)

    Article  Google Scholar 

  3. Bergmann, R., Tenbrinck, D.: Nonlocal inpainting of manifold-valued data on finite weighted graphs. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017. LNCS, vol. 10589, pp. 604–612. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68445-1_70

    Chapter  MATH  Google Scholar 

  4. Bergmann, R., Tenbrinck, D.: A graph framework for manifold-valued data. SIAM J. Imaging Sci. 11(1), 325–360 (2018)

    Article  MathSciNet  Google Scholar 

  5. Borwein, J., Reich, S., Shafrir, I.: Krasnoselski-Mann iterations in normed spaces. Can. Math. Bull. 35(1), 21–28 (1992)

    Article  MathSciNet  Google Scholar 

  6. Caselles, V., Morel, J.-M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7(3), 376–386 (1998)

    Article  MathSciNet  Google Scholar 

  7. Descloux, J.: Approximations in \(l^p\) and Chebychev approximations. J. Soc. Ind. Appl. Math. 11, 1017–1026 (1963)

    Article  Google Scholar 

  8. Egger, A., Huotari, R.: Rate of convergence of the discrete Pólya algorithm. J. Approx. Theory 60, 24–30 (1990)

    Article  MathSciNet  Google Scholar 

  9. Elmoataz, A., Desquesnes, X., Lakhdari, Z., Lézoray, O.: Nonlocal infinity Laplacian equation on graphs with applications in image processing and machine learning. Math. Comput. Simul. 102, 153–163 (2014)

    Article  MathSciNet  Google Scholar 

  10. Elmoataz, A., Toutain, M., Tenbrinck, D.: On the \(p\)-Laplacian and \(\infty \)-Laplacian on graphs with applications in image and data processing. SIAM J. Imaging Sci. 8(4), 2412–2451 (2015)

    Article  MathSciNet  Google Scholar 

  11. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. SIAM Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  Google Scholar 

  12. Hertrich, J.: Infinity-Laplacians on scalar- and vector-valued functions and optimal Lipschitz extensions on graphs. Bachelor Thesis, TU Kaiserslautern (2018)

    Google Scholar 

  13. Ivanshin, P.N., Sosov, E.N.: Local Lipschitz property for the Chebyshev center mapping over \(N\)-nets. Matematichki Vesnik 60(1), 9–22 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Kyng, R., Rao, A., Sachdeva, S., Spielman, D.A.: Algorithms for Lipschitz learning on graphs. In: Conference on Learning Theory, pp. 1190–1223 (2015)

    Google Scholar 

  15. Lazarus, A.J., Loeb, J., Propp, D.E., Stromquist, W.R., Ullman, H.D.: Combinatorial games under auction play. Games Economical Behav. 27(2), 229–264 (1999)

    Article  MathSciNet  Google Scholar 

  16. Matoušek, J., Sharir, J., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16, 498–516 (1996)

    Article  MathSciNet  Google Scholar 

  17. Oberman, A.M.: A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions. Math. Comput. 74(251), 1217–1230 (2005)

    Article  MathSciNet  Google Scholar 

  18. Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B.: Tug-of-war and infinity Laplacian. J. Am. Math. Soc. 22(1), 167–210 (2005)

    Article  MathSciNet  Google Scholar 

  19. Pólya, G.: Sur un algorithm touours convergent pour obtenir les polynomes de meillure approximation de Tchebycheff pour une function continue quelconque. Comptes Rendus de l’Académie des Sciences Paris 157, 840–843 (1913)

    MATH  Google Scholar 

  20. Quesada, J.M., Fernández-Ochoa, J., Martinez-Moreno, J., Bustamante, J.: The Pólya algorithm in sequence spaces. J. Approx. Theory 135, 245–257 (2005)

    Article  MathSciNet  Google Scholar 

  21. Schmaltz, C., Peter, P., Mainberger, M., Ebel, F., Weickert, J., Bruhn, A.: Understanding, optimising, and extending data compression with anisotropic diffusion. Int. J. Comput. Vis. 108(3), 222–240 (2014)

    Article  MathSciNet  Google Scholar 

  22. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  23. Sheffield, S., Smart, C.K.: Vector-valued optimal Lipschitz extensions. Commun. Pure Appl. Math. 65(1), 128–154 (2012)

    Article  MathSciNet  Google Scholar 

  24. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  25. Welk, M., Weickert, J., Becker, F., Schnörr, C., Feddern, C., Burgeth, B.: Median and related local filters for tensor-valued images. Signal Process. 87(2), 291–308 (2007)

    Article  Google Scholar 

  26. Xu, S., Freund, R.M., Sun, J.: Solution methodologies for the smallest enclosing circle problem. Computational Optimization and Applications. Int. J. 25(1–3), 283–292 (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Steidl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hertrich, J., Bačák, M., Neumayer, S., Steidl, G. (2019). Minimal Lipschitz Extensions for Vector-Valued Functions on Finite Graphs. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics