Skip to main content

Total Variation and Mean Curvature PDEs on the Space of Positions and Orientations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

Total variation regularization and total variation flows (TVF) have been widely applied for image enhancement and denoising. To include a generic preservation of crossing curvilinear structures in TVF we lift images to the homogeneous space \(\mathbb {M}=\mathbb {R}^{d}\rtimes S^{d\!-\!1}\) of positions and orientations as a Lie group quotient in SE(d). For \(d=2\) this is called ‘total roto-translation variation’ by Chambolle & Pock. We extend this to \(d=3\), by a PDE-approach with a limiting procedure for which we prove convergence. We also include a Mean Curvature Flow (MCF) in our PDE model on \(\mathbb {M}\). This was first proposed for \(d=2\) by Citti et al. and we extend this to \(d=3\). Furthermore, for \(d=2\) we take advantage of locally optimal differential frames in invertible orientation scores (OS).

We apply our TVF and MCF in the denoising/enhancement of crossing fiber bundles in DW-MRI. In comparison to data-driven diffusions, we see a better preservation of bundle boundaries and angular sharpness in fiber orientation densities at crossings. We support this by error comparisons on a noisy DW-MRI phantom. We also apply our TVF and MCF in enhancement of crossing elongated structures in 2D images via OS, and compare the results to nonlinear diffusions (CED-OS) via OS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, Bikhäuser (2005)

    Google Scholar 

  2. Baspinar, E., Citti, G., Sarti, A.: A geometric model of multi-scale orientation preference maps via gabor functions. JMIV 60(6), 900–912 (2018)

    Article  MathSciNet  Google Scholar 

  3. Baspinar, E.: Minimal surfaces in Sub-Riemannian structures and functional geometry of the visual cortex. Ph.D. thesis, University of Bologna (2018)

    Google Scholar 

  4. Bekkers, E.: Retinal image analysis using Sub-Riemannian geometry in \(SE(2)\). Ph.D. thesis, TU/e Eindhoven (2017)

    Google Scholar 

  5. Bekkers, E., Duits, R., Mashatkov, A., Sanguinetti, G.: A PDE approach to data-driven Sub-Riemannian geodesics in \(SE(2)\). SIIMS 8(4), 2740–2770 (2015)

    Article  MathSciNet  Google Scholar 

  6. Boscain, U., Chertovskih, R., Gauthier, J.P., Prandi, D., Remizov, A.: Highly corrupted image inpainting by hypoelliptic diffusion. JMIV 60(8), 1231–1245 (2018)

    Article  Google Scholar 

  7. Brézis, H.: Operateurs maximeaux monotones et semi-gropes de contractions dans les espaces de Hilbert, vol. 50. North-Holland Publishing Co., Amsterdam (1973)

    Google Scholar 

  8. Chambolle, A., Pock, T.: Total roto-translation variation. arXiv:17009.099532v2, pp. 1–47, July 2018

  9. Citti, G., Franceschiello, B., Sanguinetti, G., Sarti, A.: Sub-riemannian mean curvature flow for image processing. SIIMS 9(1), 212–237 (2016)

    Article  MathSciNet  Google Scholar 

  10. Citti, G., Sarti, A.: A cortical based model of perceptional completion in the roto-translation space. JMIV 24(3), 307–326 (2006)

    Article  Google Scholar 

  11. Cohen, E., Deffieux, T., Demené, C., Cohen, L.D., Tanter, M.: 3D vessel extraction in the rat brain from ultrasensitive doppler images. In: Gefen, A., Weihs, D. (eds.) Computer Methods in Biomechanics and Biomedical Engineering. LNB, pp. 81–91. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59764-5_10

    Chapter  Google Scholar 

  12. Creusen, E.J., Duits, R., Florack, L., Vilanova, A.: Numerical schemes for linear and non-linear enhancement of DW-MRI. NM-TMA 6(3), 138–168 (2013)

    Article  MathSciNet  Google Scholar 

  13. Daducci, A., Caruyer, E., Descoteaux, M., Thiran, J.P.: HARDI Reconstruction Challenge (2013). Published at IEEE ISBI 2013

    Google Scholar 

  14. Duits, R.: Perceptual organization in image analysis. Ph.D. thesis, TU/e (2005)

    Google Scholar 

  15. Duits, R., Creusen, E., Ghosh, A., Dela Haije, T.: Morphological and linear scale spaces for fiber enhancement in DW-MRI. JMIV 46(3), 326–368 (2013)

    Article  MathSciNet  Google Scholar 

  16. Duits, R., Franken, E.M.: Left invariant parabolic evolution equations on \({SE}(2)\) and contour enhancement via invertible orientation scores, part I: linear left-invariant diffusion equations on \({SE}(2)\). QAM-AMS 68, 255–292 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Duits, R., Janssen, M., Hannink, J., Sanguinetti, G.: Locally adaptive frames in the roto-translation group and their applications in medical image processing. JMIV 56(3), 367–402 (2016)

    Article  Google Scholar 

  18. Duits, R., Meesters, S., Mirebeau, J., Portegies, J.: Optimal paths for variants of the 2D and 3D reeds-shepp car with applications in image analysis. JMIV 60, 816–848 (2018)

    Article  MathSciNet  Google Scholar 

  19. Duits, R., St.-Onge, E., Portegies, J., Smets, B.: Total variation and mean curvature PDEs on \(\mathbb{R}^{d} {\rtimes }{s}^{d-1}\). Technical report https://arxiv.org/abs/1902.08145 (2019)

  20. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature. I. J. Differential Geom. 33(3), 635–681 (1991)

    Article  MathSciNet  Google Scholar 

  21. Felsberg, M., Forssen, P.E., Scharr, H.: Channel smoothing: efficient robust smoothing of low-level signal features. IEEE PAMI 28, 209–222 (2006)

    Article  Google Scholar 

  22. Franken, E.M., Duits, R.: Crossing preserving coherence-enhancing diffusion on invertible orientation scores. IJCV 85(3), 253–278 (2009)

    Article  Google Scholar 

  23. Giga, Y., Sato, M.H.: Generalized interface evolution with the Neumann boundary condition. Proc. Japan Acad. Ser. A Math. Sci. 67(8), 263–266 (1991)

    Article  MathSciNet  Google Scholar 

  24. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. CUP, Cambridge (2006)

    MATH  Google Scholar 

  25. Janssen, M.H.J., Janssen, A.J.E.M., Bekkers, E.J., Bescós, J.O., Duits, R.: Processing of invertible orientation scores of 3D images. JMIV 60(9), 1427–1458 (2018)

    Article  MathSciNet  Google Scholar 

  26. Martin, F., Bekkers, E., Duits, R.: Lie analysis package (2017). www.lieanalysis.nl/

  27. Meesters, S., et al.: Stability metrics for optic radiation tractography: towards damage prediction after resective surgery. J. Neurosci. Methods 288, 34–44 (2017)

    Article  Google Scholar 

  28. Portegies, J.M., Duits, R.: New exact and numerical solutions of the (convection-) diffusion kernels on SE(3). DGA 53, 182–219 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Portegies, J.M., Fick, R., Sanguinetti, G.R., Meesters, S.P.L., Girard, G., Duits, R.: Improving fiber alignment in HARDI by combining contextual PDE flow with constrained spherical deconvolution. PLoS ONE 10(10), e0138122 (2015)

    Article  Google Scholar 

  30. Portegies, J.: PDEs on the Lie Group SE(3) and their applications in diffusion-weighted MRI. Ph.D. thesis, Dep. Math. TU/e (2018)

    Google Scholar 

  31. Reisert, M., Burkhardt, H.: Efficient tensor voting with 3D tensorial harmonics. In: IEEE Conference on CVPRW 2008, pp. 1–7 (2008)

    Google Scholar 

  32. Sato, M.H.: Interface evolution with Neumann boundary condition. Adv. Math. Sci. Appl. 4(1), 249–264 (1994)

    MathSciNet  MATH  Google Scholar 

  33. Schmidt, M., Weickert, J.: Morphological counterparts of linear shift-invariant scale-spaces. J. Math. Imaging Vis. 56(2), 352–366 (2016)

    Article  MathSciNet  Google Scholar 

  34. Tournier, J.D., Calamante, F., Connelly, A.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)

    Article  Google Scholar 

  35. Vogt, T., Lellmann, J.: Measure-valued variational models with applications to diffusion-weighted imaging. JMIV 60(9), 1482–1502 (2018)

    Article  MathSciNet  Google Scholar 

  36. Weickert, J.A.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31(2/3), 111–127 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remco Duits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duits, R., St-Onge, E., Portegies, J., Smets, B. (2019). Total Variation and Mean Curvature PDEs on the Space of Positions and Orientations. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics