Skip to main content

Stable Explicit p-Laplacian Flows Based on Nonlinear Eigenvalue Analysis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

Implementation of nonlinear flows by explicit schemes can be very convenient, due to their simplicity and low-computational cost per time step. A well known drawback is the small time step bound, referred to as the CFL condition, which ensures a stable flow. For p-Laplacian flows, with \(1< p <2\), explicit schemes without gradient regularization require, in principle, a time step approaching zero. However, numerical implementations show explicit flows with small time-steps are well behaved. We can now explain and quantify this phenomenon.

In this paper we examine explicit p-Laplacian flows by analyzing the evolution of nonlinear eigenfunctions, with respect to the p-Laplacian operator. For these cases analytic solutions can be formulated, allowing for a comprehensive analysis. A generalized CFL condition is presented, relating the time step to the inverse of the nonlinear eigenvalue. Moreover, we show that the flow converges and formulate a bound on the error of the discrete scheme. Finally, we examine general initial conditions and propose a dynamic time-step bound, which is based on a nonlinear Rayleigh quotient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andreu, F., Ballester, C., Caselles, V., Mazón, J.M., et al.: Minimizing total variation flow. Differ. Integr. Eqn. 14(3), 321–360 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Baravdish, G., Svensson, O., Åström, F.: On backward p (x)-parabolic equations for image enhancement. Numer. Funct. Anal. Optim. 36(2), 147–168 (2015)

    Article  MathSciNet  Google Scholar 

  3. Burger, M., Gilboa, G., Moeller, M., Eckardt, L., Cremers, D.: Spectral decompositions using one-homogeneous functionals. SIAM J. Imaging Sci. 9(3), 1374–1408 (2016)

    Article  MathSciNet  Google Scholar 

  4. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Chen, J., Guo, J.: Image restoration based on adaptive p-Laplace diffusion. In: 3rd International Congress on Image and Signal Processing, vol. 1, pp. 143–146. IEEE (2010)

    Google Scholar 

  6. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  7. Cohen, I., Gilboa, G.: Shape preserving flows and the p-Laplacian spectra, HAL preprint hal-01870019

    Google Scholar 

  8. Cohen, I., Gilboa, G.: Energy dissipating flows for solving nonlinear eigenpair problems. J. Comput. Phys. 375, 1138–1158 (2018)

    Article  MathSciNet  Google Scholar 

  9. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100(1), 32–74 (1928)

    Article  MathSciNet  Google Scholar 

  10. Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Adv. Comput. Math. 6(1), 207–226 (1996)

    Article  MathSciNet  Google Scholar 

  11. García Azorero, J., Peral Alonso, I.: Existence and nonuniqueness for the p-Laplacian. Commun. Partial. Differ. Equ. 12(12), 126–202 (1987)

    Article  MathSciNet  Google Scholar 

  12. Gawronska, E., Sczygiol, N.: Relationship between eigenvalues and size of time step in computer simulation of thermomechanics phenomena. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 2 (2014)

    Google Scholar 

  13. Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sci. 7(4), 1937–1961 (2014)

    Article  MathSciNet  Google Scholar 

  14. Grewenig, S., Weickert, J., Bruhn, A.: From box filtering to fast explicit diffusion. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 533–542. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15986-2_54

    Chapter  Google Scholar 

  15. Hafiene, Y., Fadili, J., Elmoataz, A.: Nonlocal p-Laplacian evolution problems on graphs. SIAM J. Numer. Anal. 56(2), 1064–1090 (2018)

    Article  MathSciNet  Google Scholar 

  16. Huang, C., Zeng, L.: Level set evolution model for image segmentation based on variable exponent p-Laplace equation. Appl. Math. Model. 40(17–18), 7739–7750 (2016)

    Article  MathSciNet  Google Scholar 

  17. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. No. 44. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  18. Kuijper, A.: Image processing by minimising \(l^p\) norms. Pattern Recogn. Image Anal. 23(2), 226–235 (2013)

    Article  Google Scholar 

  19. Kuijper, A.: p-Laplacian driven image processing. In: IEEE International Conference on Image Processing, ICIP 2007, vol. 5, p. V-257. IEEE (2007)

    Google Scholar 

  20. Kuijper, A.: Geometrical PDEs based on second-order derivatives of gauge coordinates in image processing. Image Vis. Comput. 27(8), 1023–1034 (2009)

    Article  Google Scholar 

  21. Lax, P.D., Richtmyer, R.D.: Survey of the stability of linear finite difference equations. Commun. Pure Appl. Math. 9(2), 267–293 (1956)

    Article  MathSciNet  Google Scholar 

  22. Liu, Q., Guo, Z., Wang, C.: Renormalized solutions to a reaction-diffusion system applied to image denoising. DCDS-B 21(6), 1839–1858 (2016)

    Article  MathSciNet  Google Scholar 

  23. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. PAMI 12(7), 629–639 (1990)

    Article  Google Scholar 

  24. Wei, W., Zhou, B.: A p-Laplace equation model for image denoising. Inform. Technol. J. 11, 632–636 (2012)

    Article  Google Scholar 

  25. Weickert, J.: Anisotropic Diffusion in Image Processing, vol. 1. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  26. Widrow, B., McCool, J.M., Larimore, M.G., Johnson, C.R.: Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proc. IEEE 64(8), 1151–1162 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project is supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 777826. We acknowledge support by the Israel Science Foundation (grant No. 718/15). This work was supported by the Technion Ollendorff Minerva Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ido Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cohen, I., Falik, A., Gilboa, G. (2019). Stable Explicit p-Laplacian Flows Based on Nonlinear Eigenvalue Analysis. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics