Skip to main content

Lattice Metric Space Application to Grain Defect Detection

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

  • 1026 Accesses

Abstract

We propose a new model for grain defect detection based on the theory of lattice metric spaceĀ [7]. The lattice metric space \((\mathscr {L},d_{\mathscr {L}})\) shows outstanding advantages in representing lattices. Utilizing this advantage, we propose a new algorithm, Lattice clustering algorithm (LCA). After over-segmentation using regularized k-means, the merging stage is built upon the lattice equivalence relation. Since LCA is built upon \((\mathscr {L},d_{\mathscr {L}})\), it is robust against missing particles, deficient hexagonal cells, and can handle non-hexagonal lattices without any modification. We present various numerical experiments to validate our method and investigate interesting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027ā€“1035. Society for Industrial and Applied Mathematics (2007)

    Google ScholarĀ 

  2. Berkels, B., RƤtz, A., Rumpf, M., Voigt, A.: Identification of grain boundary contours at atomic scale. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 765ā€“776. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72823-8_66

    ChapterĀ  Google ScholarĀ 

  3. Berkels, B., RƤtz, A., Rumpf, M., Voigt, A.: Extracting grain boundaries and macroscopic deformations from images on atomic scale. J. Sci. Comput. 35(1), 1ā€“23 (2008)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  4. Boerdgen, M., Berkels, B., Rumpf, M., Cremers, D.: Convex relaxation for grain segmentation at atomic scale. In: VMV, pp. 179ā€“186 (2010)

    Google ScholarĀ 

  5. Daubechies, I.: A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models. In: Wavelets in Medicine and Biology, pp. 527ā€“546 (1996)

    Google ScholarĀ 

  6. Farkas, H.M., Kra, I.: Riemann Surfaces, pp. 9ā€“31. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-2034-3

    BookĀ  MATHĀ  Google ScholarĀ 

  7. He, Y., Kang, S.H.: Lattice identification and separation: theory and algorithm. arXiv:1901.02520 (2018)

  8. Hirvonen, P., et al.: Grain extraction and microstructural analysis method for two-dimensional poly and quasicrystalline solids. arXiv:1806.00700 (2018)

  9. Huang, P.Y., et al.: Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469(7330), 389 (2011)

    ArticleĀ  Google ScholarĀ 

  10. Kang, S.H., Sandberg, B., Yip, A.M.: A regularized k-means and multiphase scale segmentation. Inverse Prob. Imaging 5(2), 407ā€“429 (2011)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  11. Kittel, C., McEuen, P., McEuen, P.: Introduction to Solid State Physics, vol. 8. Wiley, New York (1996)

    Google ScholarĀ 

  12. La Boissoniere, G.M., Choksi, R.: Atom based grain extraction and measurement of geometric properties. Model Simul. Mater. Sci. Eng. 26(3), 035001 (2018)

    ArticleĀ  Google ScholarĀ 

  13. Lazar, E.A., Han, J., Srolovitz, D.J.: Topological framework for local structure analysis in condensed matter. Proc. Nat. Acad. Sci. 112(43), E5769ā€“E5776 (2015)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  14. Lu, J., Yang, H.: Phase-space sketching for crystal image analysis based on synchrosqueezed transforms. SIAM J. Imaging Sci. 11(3), 1954ā€“1978 (2018)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  15. Medlin, D., Hattar, K., Zimmerman, J., Abdeljawad, F., Foiles, S.: Defect character at grain boundary facet junctions: analysis of an asymmetric \(\sigma \) = 5 grain boundary in Fe. Acta Mater. 124, 383ā€“396 (2017)

    ArticleĀ  Google ScholarĀ 

  16. Mevenkamp, N., Berkels, B.: Variational multi-phase segmentation using high-dimensional local features. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1ā€“9. IEEE (2016)

    Google ScholarĀ 

  17. Radetic, T., Lancon, F., Dahmen, U.: Chevron defect at the intersection of grain boundaries with free surfaces in Au. Phys. Rev. Lett. 89(8), 085502 (2002)

    ArticleĀ  Google ScholarĀ 

  18. Rokach, L., Maimon, O.: Clustering methods. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 321ā€“352. Springer, Boston (2005). https://doi.org/10.1007/0-387-25465-X_15

    ChapterĀ  MATHĀ  Google ScholarĀ 

  19. Singer, H., Singer, I.: Analysis and visualization of multiply oriented lattice structures by a two-dimensional continuous wavelet transform. Phys. Rev. E 74(3), 031103 (2006)

    ArticleĀ  Google ScholarĀ 

  20. Stukowski, A.: Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 20(4), 045021 (2012)

    ArticleĀ  Google ScholarĀ 

  21. Yang, H., Lu, J., Ying, L.: Crystal image analysis using 2D synchrosqueezed transforms. Multiscale Model Simul. 13(4), 1542ā€“1572 (2015)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  22. Zosso, D., Dragomiretskiy, K., Bertozzi, A.L., Weiss, P.S.: Two-dimensional compact variational mode decomposition. J. Math. Imaging Vis. 58(2), 294ā€“320 (2017)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchen He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Y., Kang, S.H. (2019). Lattice Metric Space Application to Grain Defect Detection. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics