Skip to main content

Deep Eikonal Solvers

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

A deep learning approach to numerically approximate the solution to the Eikonal equation is introduced. The proposed method is built on the fast marching scheme which comprises of two components: a local numerical solver and an update scheme. We replace the formulaic local numerical solver with a trained neural network to provide highly accurate estimates of local distances for a variety of different geometries and sampling conditions. Our learning approach generalizes not only to flat Euclidean domains but also to curved surfaces enabled by the incorporation of certain invariant features in the neural network architecture. We show a considerable gain in performance, validated by smaller errors and higher orders of accuracy for the numerical solutions of the Eikonal equation computed on different surfaces. The proposed approach leverages the approximation power of neural networks to enhance the performance of numerical algorithms, thereby, connecting the somewhat disparate themes of numerical geometry and learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, S., Bak, S., McLaughlin, J., Renzi, D.: A third order accurate fast marching method for the Eikonal equation in two dimensions. SIAM J. Sci. Comput. 33(5), 2402–2420 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Monographs in Computer Science. Springer, New York (2008). https://doi.org/10.1007/978-0-387-73301-2

    Book  MATH  Google Scholar 

  3. Chen, D., Cohen, L.D.: Fast asymmetric fronts propagation for image segmentation. J. Math. Imaging Vis. 60(6), 766–783 (2018)

    Article  MathSciNet  Google Scholar 

  4. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MathSciNet  Google Scholar 

  5. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. (TOG) 32(5), 152 (2013)

    Article  Google Scholar 

  6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  7. Hassouna, M.S., Farag, A.A.: Multistencils fast marching methods: A highly accurate solution to the Eikonal equation on cartesian domains. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1563–1574 (2007)

    Article  Google Scholar 

  8. Ishii, H.: Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations. Indiana Univ. Math. J. 33(5), 721–748 (1984)

    Article  MathSciNet  Google Scholar 

  9. Ishii, H.: A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type. Proc. Am. Math. Soc., 247–251 (1987)

    Article  MathSciNet  Google Scholar 

  10. Kimmel, R., Kiryati, N., Bruckstein, A.M.: Multivalued distance maps for motion planning on surfaces with moving obstacles. IEEE Trans. Robot. Autom. 14(3), 427–436 (1998)

    Article  Google Scholar 

  11. Kimmel, R., Maurer, R.P.: Method of computing sub-pixel euclidean distance maps. US Patent 7,113,617, September 26 2006

    Google Scholar 

  12. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Nat. Acad. Sci. 95(15), 8431–8435 (1998)

    Article  MathSciNet  Google Scholar 

  13. Kimmel, R., Sethian, J.A.: Optimal algorithm for shape from shading and path planning. J. Math. Imaging Vis. 14(3), 237–244 (2001)

    Article  MathSciNet  Google Scholar 

  14. Lee, S.K., Fekete, S.P., McLurkin, J.: Structured triangulation in multi-robot systems: coverage, patrolling, voronoi partitions, and geodesic centers. Int. J. Robot. Res. 35(10), 1234–1260 (2016)

    Article  Google Scholar 

  15. LeVeque, R.J.: Finite difference methods for differential equations. Draft Version Use AMath 585(6), 112 (1998)

    Google Scholar 

  16. Li, B., et al.: A comparison of 3D shape retrieval methods based on a large-scale benchmark supporting multimodal queries. Comput. Vis. Image Underst. 131, 1–27 (2015)

    Article  Google Scholar 

  17. Li, F., Shu, C.W., Zhang, Y.T., Zhao, H.: A second order discontinuous Galerkin fast sweeping method for Eikonal equations. J. Comput. Phys. 227(17), 8191–8208 (2008)

    Article  MathSciNet  Google Scholar 

  18. Long, Z., Lu, Y., Ma, X., Dong, B.: PDE-net: Learning PDEs from data. arXiv preprint arXiv:1710.09668 (2017)

  19. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  Google Scholar 

  20. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: IEEE Proceedings of Computer Vision and Pattern Recognition (CVPR), vol. 1, no. 2, p. 4 (2017)

    Google Scholar 

  21. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992)

    Article  MathSciNet  Google Scholar 

  22. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MathSciNet  Google Scholar 

  23. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  24. Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)

    Article  MathSciNet  Google Scholar 

  25. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Trans. Graph. (TOG) 24, 553–560 (2005)

    Article  Google Scholar 

  26. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40(9), 1528–1538 (1995)

    Article  MathSciNet  Google Scholar 

  27. Varadhan, S.R.S.: On the behavior of the fundamental solution of the heat equation with variable coefficients. Commun. Pure Appl. Math. 20(2), 431–455 (1967)

    Article  MathSciNet  Google Scholar 

  28. Wang, W., Shen, J., Porikli, F.: Saliency-aware geodesic video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3395–3402 (2015)

    Google Scholar 

  29. Weber, O., Devir, Y.S., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Parallel algorithms for approximation of distance maps on parametric surfaces. ACM Trans. Graph. (TOG) 27(4), 104 (2008)

    Article  Google Scholar 

  30. Younes, L.: Spaces and manifolds of shapes in computer vision: an overview. Image Vis. Comput. 30(6–7), 389–397 (2012)

    Article  Google Scholar 

  31. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. In: Advances in Neural Information Processing Systems, pp. 3391–3401 (2017)

    Google Scholar 

  32. Zhao, H.K., Osher, S., Merriman, B., Kang, M.: Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method. Comput. Vis. Image Underst. 80(3), 295–314 (2000)

    Article  Google Scholar 

  33. Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Lichtenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lichtenstein, M., Pai, G., Kimmel, R. (2019). Deep Eikonal Solvers. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics