Skip to main content

Functional Liftings of Vectorial Variational Problems with Laplacian Regularization

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

We propose a functional lifting-based convex relaxation of variational problems with Laplacian-based second-order regularization. The approach rests on ideas from the calibration method as well as from sublabel-accurate continuous multilabeling approaches, and makes these approaches amenable for variational problems with vectorial data and higher-order regularization, as is common in image processing applications. We motivate the approach in the function space setting and prove that, in the special case of absolute Laplacian regularization, it encompasses the discretization-first sublabel-accurate continuous multilabeling approach as a special case. We present a mathematical connection between the lifted and original functional and discuss possible interpretations of minimizers in the lifted function space. Finally, we exemplarily apply the proposed approach to 2D image registration problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alberti, G., Bouchitté, G., Dal Maso, G.: The calibration method for the mumford-shah functional and free-discontinuity problems. Calc. Var. Partial Differ. Equ. 16(3), 299–333 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bouchitté, G., Fragalà, I.: A duality theory for non-convex problems in the calculus of variations. Arch. Rational. Mech. Anal. 229(1), 361–415 (2018)

    Article  MathSciNet  Google Scholar 

  3. Brehmer, K., Wacker, B., Modersitzki, J.: A novel similarity measure for image sequences. In: Klein, S., Staring, M., Durrleman, S., Sommer, S. (eds.) WBIR 2018. LNCS, vol. 10883, pp. 47–56. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92258-4_5

    Chapter  Google Scholar 

  4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  5. Chambolle, A.: Convex representation for lower semicontinuous envelopes of functionals in L\(^1\). J. Convex Anal. 8(1), 149–170 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM J. Imaging Sci. 5(4), 1113–1158 (2012)

    Article  MathSciNet  Google Scholar 

  7. Fischer, B., Modersitzki, J.: Curvature based image registration. J. Math. Imaging Vis. 18(1), 81–85 (2003)

    Article  MathSciNet  Google Scholar 

  8. Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations I. Cartesian Currents, vol. 37. Springer, Heidelberg (1998)

    Book  Google Scholar 

  9. Goldluecke, B., Strekalovskiy, E., Cremers, D.: Tight convex relaxations for vector-valued labeling. SIAM J. Imaging Sci. 6(3), 1626–1664 (2013)

    Article  MathSciNet  Google Scholar 

  10. Goldstein, T., Esser, E., Baraniuk, R.: Adaptive primal dual optimization for image processing and learning. In: Proceedings 6th NIPS Workshop Optimize Machine Learning (2013)

    Google Scholar 

  11. Kleinberg, J., Tardos, E.: Approximation algorithms for classification problems with pairwise relationships: metric labeling and markov random fields. J. ACM (JACM) 49(5), 616–639 (2002)

    Article  MathSciNet  Google Scholar 

  12. Laude, E., Möllenhoff, T., Moeller, M., Lellmann, J., Cremers, D.: Sublabel-accurate convex relaxation of vectorial multilabel energies. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 614–627. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_37

    Chapter  Google Scholar 

  13. Lellmann, J., Lenzen, F., Schnörr, C.: Optimality bounds for a variational relaxation of the image partitioning problem. J. Math. Imaging Vis. 47(3), 239–257 (2013)

    Article  MathSciNet  Google Scholar 

  14. Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation regularization for functions with values in a manifold. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2944–2951 (2013)

    Google Scholar 

  15. Loewenhauser, B., Lellmann, J.: Functional lifting for variational problems with higher-order regularization. In: Tai, X.-C., Bae, E., Lysaker, M. (eds.) IVLOPDE 2016. MV, pp. 101–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91274-5_5

    Chapter  Google Scholar 

  16. Mora, M.G.: The calibration method for free-discontinuity problems on vector-valued maps. J. Convex Anal. 9(1), 1–29 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Möllenhoff, T., Cremers, D.: Sublabel-accurate discretization of nonconvex free-discontinuity problems. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  18. Möllenhoff, T., Laude, E., Moeller, M., Lellmann, J., Cremers, D.: Sublabel-accurate relaxation of nonconvex energies. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3948–3956 (2016)

    Google Scholar 

  19. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. SIAM J. Imaging Sci. 3(4), 1122–1145 (2010)

    Article  MathSciNet  Google Scholar 

  20. Strekalovskiy, E., Chambolle, A., Cremers, D.: A convex representation for the vectorial mumford-shah functional. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1712–1719. IEEE (2012)

    Google Scholar 

  21. Strekalovskiy, E., Chambolle, A., Cremers, D.: Convex relaxation of vectorial problems with coupled regularization. SIAM J. Imaging Sci. 7(1), 294–336 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support through DFG grant LE 4064/1-1 “Functional Lifting 2.0: Efficient Convexifications for Imaging and Vision” and NVIDIA Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Vogt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vogt, T., Lellmann, J. (2019). Functional Liftings of Vectorial Variational Problems with Laplacian Regularization. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics