Skip to main content

GAN with Pixel and Perceptual Regularizations for Photo-Realistic Joint Deblurring and Super-Resolution

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11542))

Included in the following conference series:

  • 2541 Accesses

Abstract

In this paper, we propose a Generative Adversarial Network with Pixel and Perceptual regularizations, denoted as P2GAN, to restore single motion blurry and low-resolution images jointly into clear and high-resolution images. It is an end-to-end neural network consisting of deblurring module and super-resolution module, which repairs degraded pixels in the motion-blur images firstly, and then outputs the deblurred images and deblurred features for further reconstruction. More specifically, the proposed P2GAN integrates pixel-wise loss in pixel-level, contextual loss and adversarial loss in perceptual level simultaneously, in order to guide on deblurring and super-resolution reconstruction of the raw images that are blurry and in low-resolution, which help obtaining realistic images. Extensive experiments conducted on a real-world dataset manifest the effectiveness of the proposed approaches, outperforming the state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)

    Google Scholar 

  2. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)

    Google Scholar 

  3. Xu, X., Sun, D., Pan, J., Zhang, Y., Pfister, H., Yang, M.H.: Learning to super-resolve blurry face and text images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 251–260 (2017)

    Google Scholar 

  4. Zhang, X., Wang, F., Dong, H., Guo, Y.: A deep encoder-decoder networks for joint deblurring and super-resolution. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1448–1452. IEEE (2018)

    Google Scholar 

  5. Zhang, X., Dong, H., Hu, Z., Lai, W.S., Wang, F., Yang, M.H.: Gated fusion network for joint image deblurring and super-resolution. arXiv preprint arXiv:1807.10806 (2018)

  6. Li, J., Fang, F., Mei, K., Zhang, G.: Multi-scale residual network for image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 517–532 (2018)

    Chapter  Google Scholar 

  7. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  8. Ma, C., Yang, C.Y., Yang, X., Yang, M.H.: Learning a no-reference quality metric for single-image super-resolution. Comput. Vis. Image Underst. 158, 1–16 (2017)

    Article  Google Scholar 

  9. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint (2017)

    Google Scholar 

  10. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  11. Michaeli, T., Irani, M.: Nonparametric blind super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–952 (2013)

    Google Scholar 

  12. Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: CVPR (2017)

    Google Scholar 

  13. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. arXiv preprint (2018)

    Google Scholar 

  14. Mechrez, R., Talmi, I., Zelnik-Manor, L.: The contextual loss for image transformation with non-aligned data. arXiv preprint arXiv:1803.02077 (2018)

  15. Mechrez, R., Talmi, I., Shama, F., Zelnik-Manor, L.: Maintaining natural image statistics with the contextual loss. arXiv preprint arXiv:1803.04626 (2018)

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. 61703109, No. 91748107), and the Guangdong Innovative Research Team Program (No. 2014ZT05G157).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenguo Yang , Yong Wang or Wenyin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y. et al. (2019). GAN with Pixel and Perceptual Regularizations for Photo-Realistic Joint Deblurring and Super-Resolution. In: Gavrilova, M., Chang, J., Thalmann, N., Hitzer, E., Ishikawa, H. (eds) Advances in Computer Graphics. CGI 2019. Lecture Notes in Computer Science(), vol 11542. Springer, Cham. https://doi.org/10.1007/978-3-030-22514-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22514-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22513-1

  • Online ISBN: 978-3-030-22514-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics