Skip to main content

Estimation of the Necessary Sample Size for Approximation of Stochastic Optimization Problems with Probabilistic Criteria

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2019)

Abstract

Stochastic optimization problems with probabilistic and quantile objective functions are considered. The probability objective function is defined as the probability that the value of losses does not exceed a fixed level. The quantile function is defined as the minimal value of losses that cannot be exceeded with a fixed probability. Sample approximations of the considered problems are formulated. A method to estimate the accuracy of the approximation of the probability maximization and quantile minimization is described for the case of a finite set of feasible strategies. Based on this method, we estimate the necessary sample size to obtain (with a given probability) an epsilon-optimal strategy to the original problems by solving their approximations in the cases of finite set of feasible strategies. Also, the necessary sample size is obtained for the probability maximization in the case of a bounded infinite set of feasible strategies and a Lipschitz continuous probability function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kibzun, A.I., Kan, Y.S.: Stochastic Programming Problems with Probability and Quantile Functions. Wiley, Chichester, New York, Brisbane, Toronto, Singapore (1996)

    MATH  Google Scholar 

  2. Artstein, Z., Wets, R.J.-B.: Consistency of minimizers and the SLLN for stochastic programs. J. Convex Anal. 2, 1–17 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Pagnoncelli, B.K., Ahmed, S., Shapiro, A.: Sample average approximation method for chance constrained programming: theory and applications. J. Optim. Theory Appl. 142, 399–416 (2009). https://doi.org/10.1007/s10957-009-9523-6

    Article  MathSciNet  MATH  Google Scholar 

  4. Kibzun, A.I., Ivanov, S.V.: On the convergence of sample approximations for stochastic programming problems with probabilistic criteria. Automat. Remote Control. 79(2), 216–228 (2018). https://doi.org/10.1134/S0005117918020029

    Article  MathSciNet  MATH  Google Scholar 

  5. Hess, C., Seri, R.: Generic consistency for approximate stochastic programming and statistical problems. SIAM J. Optim. 29(1), 290–317 (2019). https://doi.org/10.1137/17M1156769

    Article  MathSciNet  MATH  Google Scholar 

  6. Guigues, V., Juditsky, A., Nemirovski, A.: Non-asymptotic confidence bounds for the optimal value of a stochastic program. Optim. Method. Softw. 32(5), 1033–1058 (2017). https://doi.org/10.1080/10556788.2017.1350177

    Article  MathSciNet  MATH  Google Scholar 

  7. Kibzun, A.I., Naumov, A.V., Norkin, V.I.: On reducing a quantile optimization problem with discrete distribution to a mixed integer programming problem. Automat. Remote Control. 74(6), 951–967 (2013). https://doi.org/10.1134/S0005117913060064

    Article  MathSciNet  MATH  Google Scholar 

  8. Shapiro, A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.) Handbooks in OR Handbooks in Operations Research and Management Science & MS, North-Holland, Dordrecht, The Netherlands, vol. 10, pp. 353–425 (2003). https://doi.org/10.1016/S0927-0507(03)10006-0

  9. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Book  Google Scholar 

  10. Kleywegt, A.J., Shapiro, A., Homem-De-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2001). https://doi.org/10.1137/S1052623499363220

    Article  MathSciNet  MATH  Google Scholar 

  11. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19(2), 674–699 (2008). https://doi.org/10.1137/070702928

    Article  MathSciNet  MATH  Google Scholar 

  12. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02431-3

    Book  MATH  Google Scholar 

  13. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  14. Kibzun, A., Uryasev, S.: Differentiability of probability function. Stochast. Anal. Appl. 16(6), 1101–1128 (1998). https://doi.org/10.1080/07362999808809581

    Article  MathSciNet  MATH  Google Scholar 

  15. Van Ackooij, W., Henrion, R.: Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions. SIAM J. Optim. 24(4), 1864–1889 (2014). https://doi.org/10.1137/130922689

    Article  MathSciNet  MATH  Google Scholar 

  16. Mosteller, F.: One some useful inefficient statistics. Ann. Math. Stat. 17, 317–408 (1946)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by the Russian Foundation for Basic Research (project 19-07-00436).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanov, S.V., Zhenevskaya, I.D. (2019). Estimation of the Necessary Sample Size for Approximation of Stochastic Optimization Problems with Probabilistic Criteria. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Lecture Notes in Computer Science(), vol 11548. Springer, Cham. https://doi.org/10.1007/978-3-030-22629-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22629-9_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22628-2

  • Online ISBN: 978-3-030-22629-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics