Abstract
Stochastic optimization problems with probabilistic and quantile objective functions are considered. The probability objective function is defined as the probability that the value of losses does not exceed a fixed level. The quantile function is defined as the minimal value of losses that cannot be exceeded with a fixed probability. Sample approximations of the considered problems are formulated. A method to estimate the accuracy of the approximation of the probability maximization and quantile minimization is described for the case of a finite set of feasible strategies. Based on this method, we estimate the necessary sample size to obtain (with a given probability) an epsilon-optimal strategy to the original problems by solving their approximations in the cases of finite set of feasible strategies. Also, the necessary sample size is obtained for the probability maximization in the case of a bounded infinite set of feasible strategies and a Lipschitz continuous probability function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kibzun, A.I., Kan, Y.S.: Stochastic Programming Problems with Probability and Quantile Functions. Wiley, Chichester, New York, Brisbane, Toronto, Singapore (1996)
Artstein, Z., Wets, R.J.-B.: Consistency of minimizers and the SLLN for stochastic programs. J. Convex Anal. 2, 1–17 (1996)
Pagnoncelli, B.K., Ahmed, S., Shapiro, A.: Sample average approximation method for chance constrained programming: theory and applications. J. Optim. Theory Appl. 142, 399–416 (2009). https://doi.org/10.1007/s10957-009-9523-6
Kibzun, A.I., Ivanov, S.V.: On the convergence of sample approximations for stochastic programming problems with probabilistic criteria. Automat. Remote Control. 79(2), 216–228 (2018). https://doi.org/10.1134/S0005117918020029
Hess, C., Seri, R.: Generic consistency for approximate stochastic programming and statistical problems. SIAM J. Optim. 29(1), 290–317 (2019). https://doi.org/10.1137/17M1156769
Guigues, V., Juditsky, A., Nemirovski, A.: Non-asymptotic confidence bounds for the optimal value of a stochastic program. Optim. Method. Softw. 32(5), 1033–1058 (2017). https://doi.org/10.1080/10556788.2017.1350177
Kibzun, A.I., Naumov, A.V., Norkin, V.I.: On reducing a quantile optimization problem with discrete distribution to a mixed integer programming problem. Automat. Remote Control. 74(6), 951–967 (2013). https://doi.org/10.1134/S0005117913060064
Shapiro, A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.) Handbooks in OR Handbooks in Operations Research and Management Science & MS, North-Holland, Dordrecht, The Netherlands, vol. 10, pp. 353–425 (2003). https://doi.org/10.1016/S0927-0507(03)10006-0
Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. Society for Industrial and Applied Mathematics, Philadelphia (2009)
Kleywegt, A.J., Shapiro, A., Homem-De-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2001). https://doi.org/10.1137/S1052623499363220
Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19(2), 674–699 (2008). https://doi.org/10.1137/070702928
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02431-3
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)
Kibzun, A., Uryasev, S.: Differentiability of probability function. Stochast. Anal. Appl. 16(6), 1101–1128 (1998). https://doi.org/10.1080/07362999808809581
Van Ackooij, W., Henrion, R.: Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions. SIAM J. Optim. 24(4), 1864–1889 (2014). https://doi.org/10.1137/130922689
Mosteller, F.: One some useful inefficient statistics. Ann. Math. Stat. 17, 317–408 (1946)
Acknowledgements
The work is supported by the Russian Foundation for Basic Research (project 19-07-00436).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Ivanov, S.V., Zhenevskaya, I.D. (2019). Estimation of the Necessary Sample Size for Approximation of Stochastic Optimization Problems with Probabilistic Criteria. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Lecture Notes in Computer Science(), vol 11548. Springer, Cham. https://doi.org/10.1007/978-3-030-22629-9_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-22629-9_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22628-2
Online ISBN: 978-3-030-22629-9
eBook Packages: Computer ScienceComputer Science (R0)