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Abstract

Complex numerical weather prediction models incorporate a variety of physical processes,
each described by multiple alternative physical schemes with specific parameters. The selec-
tion of the physical schemes and the choice of the corresponding physical parameters during
model configuration can significantly impact the accuracy of model forecasts. There is no
combination of physical schemes that works best for all times, at all locations, and under all
conditions. It is therefore of considerable interest to understand the interplay between the
choice of physics and the accuracy of the resulting forecasts under different conditions.

This paper demonstrates the use of machine learning techniques to study the uncertainty
in numerical weather prediction models due to the interaction of multiple physical processes.
The first problem addressed herein is the estimation of systematic model errors in output
quantities of interest at future times, and the use of this information to improve the model
forecasts. The second problem considered is the identification of those specific physical
processes that contribute most to the forecast uncertainty in the quantity of interest under
specified meteorological conditions. In order to address these questions we employ two ma-
chine learning approaches, random forests and artificial neural networks. The discrepancies
between model results and observations at past times are used to learn the relationships
between the choice of physical processes and the resulting forecast errors.

Numerical experiments are carried out with the Weather Research and Forecasting
(WRF) model. The output quantity of interest is the model precipitation, a variable that
is both extremely important and very challenging to forecast. The physical processes un-
der consideration include various micro-physics schemes, cumulus parameterizations, short
wave, and long wave radiation schemes. The experiments demonstrate the strong potential
of machine learning approaches to aid the study of model errors.

Keywords: Numerical weather prediction model, precipitation prediction, physical
processes, machine learning



1. Introduction

Computer simulation models of the physical world, such as numerical weather prediction
(NWP) models, are imperfect and can only approximate the complex evolution of physical
reality. Some of the errors are due to the uncertainty in the initial and boundary conditions,
forcings, and model parameter values. Other errors, called structural model errors, are due
to our incomplete knowledge about the true physical processes, and manifest themselves as
missing dynamics in the model [34]. Examples of structural errors include the misrepresen-
tation of sea-ice in the spring and fall, errors affecting the stratosphere above polar regions
in winter [53], as well as errors due to the interactions among (approximately-represented)
physical processes.

Data assimilation improves model forecasts by fusing information from both model out-
puts and observations of the physical world in a coherent statistical estimation framework
[1, 28, 39, 53]. While traditional data assimilation reduces the uncertainty in the model state
and model parameter values, no methodologies to reduce the structural model uncertainty
are available to date.

In this study we consider the Weather Research and Forecasting (WRF) model [56],
a mesoscale atmospheric modeling system. The WRF model includes multiple physical
processes and parametrization schemes, and choosing different model options can lead to
significant variability in the model predictions [12, 38].

Among different atmospheric phenomena, the prediction of precipitation is extremely
challenging and is obtained by solving the atmospheric dynamic and thermodynamic equa-
tions [38]. Model forecasts of precipitation are very sensitive to physics options such as
the micro-physics, cumulus, long wave, and short wave radiation [13, 31, 38]. Other physics
settings that can affect the WRF precipitation predictions include surface physics, planetary
boundary layer (PBL), land-surface (LS) parameterizations, and lateral boundary condition.
Selecting the right physical process representations and parameterizations is a challenge. In
practice the values of physical parameters are empirically determined such as to minimize
the difference between the measurements and model predictions [31, 56].

Considerable effort has been dedicated to determining the best physical configurations of
the weather forecast models such as to improve their predictions of precipitation. No single
choice of physical parameters works perfectly for all times, geographical locations, or mete-
orological conditions [15, 55]. Lowrey and Yang [31] investigated the errors in precipitation
predictions caused by different parameters including micro-physics and cumulus physics, the
buffer zone, the initialization interval, the domain size and the initial and boundary condi-
tions. Jankov et al. [24] examined different combinations of cumulus convection schemes,
micro-physical options, and boundary conditions. They concluded that no configuration
was the clear winner at all times, and the variability of precipitation predictions was more
sensitive to the choice of the cumulus options rather than micro-physical schemes. Another
study conducted by Nasrollahi [38] showed that the best model ability to predict hurricanes
was achieved using a particular cumulus parameterization scheme combined with a particu-
lar micro-physics scheme. Therefore, the interactions of different physical parameterizations
have a considerable impact on model errors, and can be considered as one of the main sources
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of uncertainty that affect the forecast accuracy.
This paper demonstrates the potential of machine learning techniques to help solve two

important problems related to the structural/physical uncertainty in numerical weather
prediction models. he first problem addressed herein is the estimation of systematic model
errors in output quantities of interest at future times, and the use of this information to
improve the model forecasts. The second problem considered is the identification of those
specific physical processes that contribute most to the forecast uncertainty in the quantity
of interest under specified meteorological conditions.

The application of machine learning techniques to problems in environmental science has
grown considerably in recent years. In [16] a kernel based regression method is developed
as a forecasting approach with performance close to Ensemble Kalman Filter (EnKF) and
less computational resources. Krasnopol et al. [27] employ an Artificial Neural Network
technique for developing an ensemble stochastic convection parameterization for climate
models. Attia et al. [3] develop a new filtering algorithm called Cluster Hybrid Monte
Carlo sampling filter (CLHMC) non-Gaussian data assimilation which relaxes the Gaussian
assumptions by employing a clustering step. Moosavi et al. [33] use regression machine
learning techniques for adaptive localization in ensemble based data assimilation.

This study focuses on the uncertainty in forecasts of cumulative precipitation caused by
imperfect representations of physics and their interaction in the WRF model. The total
accumulated precipitation includes all phases of convective and non-convective precipita-
tion. Specifically, we seek to use the discrepancies between WRF forecasts and measured
precipitation levels in the past in order to estimate in advance the WRF prediction un-
certainty. The model-observation differences contain valuable information about the error
dynamics and the missing physics of the model. We use this information to construct two
probabilistic functions. The first one maps the discrepancy data and the physical parame-
ters onto the expected forecast errors. The second maps the forecast error levels onto the
set of physical parameters that are consistent with them. Both maps are constructed using
supervised machine learning techniques, specifically, using Artificial Neural Networks and
Random Forests [37]. The two probabilistic maps are used to address the problems posed
above, namely the estimation of model errors in output quantities of interest at future times,
and the identification of physical processes that contribute most to the forecast uncertainty.

The remainder of this study is organized as follows. Section 2 covers the definition of the
model errors. Section 3 describes the proposed approach of error modeling using machine
learning. Section 4 reports numerical experiments with the WRF model that illustrate the
capability of the new approach to answer two important questions regarding model errors.
Conclusions are drawn in Section 5.

2. Model errors

First-principles computer models capture our knowledge about the physical laws that
govern the evolution of a real physical system. The model evolves an initial state at the
initial time to states at future times. All models are imperfect, e.g., atmospheric model
uncertainties are associated with sub-grid modeling, boundary conditions, and forcings. All
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these modeling uncertainties are aggregated into a component that is generically called
model error [17, 41, 42]. In the past decade there has been a considerable scientific effort to
incorporate model errors and estimate their impact on the best estimate in both variational
and statistical approaches [1, 6, 19, 46, 52, 53, 58].

In what follows, we describe our mathematical formulation of the model error associated
with NWP models. A similar formulation has been used in [34] where the model structural
uncertainty is studied based on the information provided by the discrepancy between the
model solution and the true state of the physical system, as measured by the available
observations.

Consider the following NWP computer model M, that describes the time-evolution of
the state of the atmosphere:

xt =M (xt−1,Θ) , t = 1, · · · , T . (1a)

The state vector xt ∈ Rn contains the dynamic variables of the atmosphere such as temper-
ature, pressure, precipitation, tracer concentrations, at all spatial locations covered by the
model, and at t. All the physical parameters of the model are lumped into Θ ∈ R`.

Formally, the true state of the atmosphere can be described by a physical process P with
internal states υt, which are unknown. The atmosphere, as an abstract physical process,
evolves in time as follows:

υt = P (υt−1) , t = 1, · · · , T. (1b)

The model state seeks to approximates the physical state:

xt ≈ ψ(υt), t = 1, · · · , T, (1c)

where the operator ψ maps the physical space onto the model space, e.g., by sampling the
continuous meteorological fields onto a finite dimensional computational grid [34].

Assume that the model state at t − 1 has the ideal value obtained from the true state
via (1c). The model prediction at t will differ from the reality:

ψ(υt) =M
(
ψ(υt−1),Θ

)
+ δt

(
υt
)
, t = 1, · · · , T, (2)

where the discrepancy δt ∈ Rn between the model prediction and reality is the structural
model error. This vector lives in the model space.

Although the global physical state υt is unknown, we obtain information about it by
measuring of a finite number of observables yt ∈ Rm, as follows:

yt = h(υt) + εt, εt ∼ N (0,Rt), t = 1, · · · , T, (3)

Here h is the observation operator that maps the true state of atmosphere to the observation
space, and the observation error εt is assumed to be normally distributed.

In order to relate the model state to observations we also consider the observation oper-
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ator H that maps the model state onto the observation space; the model-predicted values
ot ∈ Rm of the observations (3) are:

ot = H(xt), t = 1, · · · , T. (4)

We note that the measurements yt and the predictions ot live in the same space and there-
fore can be directly compared. The difference between the observations (6b) of the real
system and the model predicted values of these observables (4) represent the model error in
observation space:

∆t = ot − yt ∈ Rm, t = 1, · · · , T. (5)

For clarity, in what follows we make the following simplifying assumptions [34]:

• the physical system is finite dimensional υt ∈ Rn,

• the model state lives in the same space as reality, i.e., xt ≈ υt and ψ(·) ≡ id is the
identity operator in (1c), and

• H(·) ≡ h(·) in (3) and (4).

These assumptions imply that the discretization errors are very small, and that the main
source of error are the parameterized physical processes represented by Θ and the interaction
among these processes. Uncertainties from other sources, such as boundary conditions, are
assumed to be negligible.

With these assumptions, the evolution equations for the physical system (1b) and the
physical observations equation (3) become, respectively:

υt = M
(
υt−1,Θ

)
+ δt

(
υt), t = 1, · · · , T, (6a)

yt = h(υt) + εt. (6b)

The model errors δt (2) are not fully known at any time t, as having the exact errors
is akin to having a perfect model. However, the discrepancies between the modeled and
measured observable quantities (5) at past times have been computed and are available at
the current time t.

Our goal is to use the errors in observable quantities at past times, ∆τ for τ = t −
1, t− 2, · · · , in order to estimate the model error δτ at future times τ = t, t+ 1, · · · . This is
achieved by unravelling the hidden information in the past ∆τ values. Good estimates of the
discrepancy δt, when available, could improve model predictions by applying the correction
(6a) to model results:

vt ≈ xt + δt. (7)

Our proposed error modeling approach constructs input-output mappings to estimate
given aspects of model errors δt. The inputs to these mappings are the physical parameters
Θ of the model. The outputs to these mappings are different aspects of the error in a
quantity of interest, such as the model errors over a specific geographical location, or the
error norm of model error integrated over the entire domain.

5



Specifically, the aspect of interest (quantity of interest) in this study is the error in pre-
cipitation levels forecasted by the model. The parameters Θ describe the set of physical
processes that are essential to be included in the WRF model in order to produce accu-
rate precipitation forecasts. The WRF model is modular and different combinations of the
physical packages can be selected, each corresponding to a different value of Θ.

We use the error mappings learned from past model runs to estimate the model errors δt.
We also consider estimating what combination of physical processes Θ leads to lower model
errors, or reversely, what interactions of which physics cause larger errors in the prediction
of the quantity of interest.

3. Approximating model errors using machine learning

We propose a multivariate input-output learning model to predict the model errors δ,
defined in (2), stemming from the uncertainty in parameters Θ. To this end, we define
a probabilistic function φ that maps every set of input features F ∈ Rr to output target
variables Λ ∈ Ro:

φ(F ) ≈ Λ , (8)

and approximate the function φ using machine learning.
Different particular definitions of φ in (8) will be used to address two different problems

related to model errors, as follows:

1. The first problem is to estimate the systematic model error in certain quantities of
interest at future times, and to use this information in order to improve the WRF
forecast. To achieve this one quantifies the model error aspects that correspond to
running WRF with different physical configurations (different parameters Θ).

2. The second problem is to identify the specific physical processes that contribute most
to the forecast uncertainty in the quantity of interest under specified meteorological
conditions. To achieve this one finds the model configurations (physical parameters Θ)
that lead to forecast errors smaller that a given threshold under specified meteorological
conditions.

In what follows we explain in detail the function φ specification, the input features, and the
target variables for each of these problems.

3.1. Problem one: estimating in advance aspects of interest of the model error

Forecasts produced by NWP models are contaminated by model errors. These model
errors are highly correlated in time; hence historical information about the model errors can
be used as an input to the learning model to gain insight about model errors that affect
the forecast. We are interested in the uncertainty caused due to the interaction between
the various components in the physics based model; these interactions are lumped into the
parameter Θ that is supplied as an input to the learning model. The learning model aims to
predict the error of NWP model of next forecast window using the historical values of model
error and the physical parameters used in the model. We define the following mapping:

φerror (Θ,∆τ ,oτ ,ot) ≈∆t τ < t. (9)

6



We use a machine learning algorithm to approximate the function φerror. The learning model
is trained using a dataset that consists of the following inputs:

• WRF physical packages that affect the physical quantity of interest (Θ),

• historical WRF forecasts (oτ for τ ≤ t− 1),

• historical model discrepancies (∆τ for τ ≤ t− 1),

• WRF forecast at the current time (ot),

• the available model discrepancy at the current time (∆t) since we have access to the
observations from reality yt at the current time step.

In supervised learning process, the learning model identifies the effect of physical packages,
the historical WRF forecast, the historical model discrepancy, and the WRF forecast at the
current time on the available model discrepancy at the current time. After the model get
trained on the historical data, it yields an approximation to the mapping φerror. We denote
this approximate mapping by φ̂error.

During the test phase the approximate mapping φ̂error is used to estimate the model
discrepancy ∆̂t+1 in advance. We emphasize that the model prediction (WRF forecast) at

the time of interest t + 1 (ot+1) is available, where as the model discrepancy ∆̂t+1 is an
unknown quantity. In fact the run time of WRF is much smaller than the time interval
between t and t + 1, or in other way, the time interval is large enough to run the WRF
model and obtain the forecast for next time window, estimate the model errors for next
time window and finally improve the model forecast by combining the model forecast and
model errors.

At the test time we predict the future model error as follows:

∆̂t+1 ≈ φ̂error (Θ,∆τ ,oτ ,ot+1) , τ < t+ 1 .

As explained in [34], the predicted error ∆̂t+1 in the observation space can be used to
estimate the error δt+1 in the model space. In order to achieve this one needs to use additional
information about the structure of the model and the observation operator. For example, if
the error ∆̂t+1 represents the projection of the full model error onto the observation space,
we have:

∆t+1 ≈ Ht · δt+1, δ̂t+1 ≈ Ht

(
HT
t Ht

)−1
HT
t · ∆̂t+1, (10a)

where we use the linearized observation operator at the current time, Ht = h′(xt). A more
complex approach is to use a Kalman update formula:

δ̂t+1 ≈ cov(xt,ot) (cov(ot,ot) + Rt)
−1 ∆̂t+1, (10b)

where Rt is the covariance of observation errors. The Kalman update approach requires
estimates of the covariance matrices between model variables; such covariances are already
available in an ensemble based data assimilation system. Once we estimate the future model
error δt+1, we can improve the NWP output using equation (7).
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3.2. Problem two: identifying the physical packages that contribute most to the forecast
uncertainty

Typical NWP models incorporate an array of different physical packages to represent
multiple physical phenomena that act simultaneously. Each physical package contains sev-
eral alternative configurations (e.g., parameterizations or numerical solvers) that affect the
accuracy of the forecasts produced by the NWP model. A particular scheme in a certain
physical package best captures the reality under some specific conditions (e.g., time of the
year, representation of sea-ice, etc.). The primary focus of this study is the accuracy of
precipitation forecasts, therefore we seek to learn the impacts of all the physical packages
that affect precipitation. To this end, we define the following mapping:

φphysics (∆t) ≈ Θ , (11)

that estimates the configuration Θ of the physical packages such that the WRF run generates
a forecast with an error consistent with the prescribed level ∆t (where ∆t defined in equation
(5) is the forecast error in observation space at time t.)

We train the model to learn the effect of the physical schemes on the mismatch between
WRF forecasts and reality. The input data required for the training process is obtained
by running the model with various physical package configurations Θtrain

i , and comparing
the model forecast against the observations at all past times τ to obtain the corresponding
errors ∆train

τ,i for τ ≤ t and i ∈ {training data set}. The output data is the corresponding
physical combinations Θ that leads to the input error threshold.

In order to estimate the combinations of physical process configuration that contribute
most to the uncertainty in predicting precipitation we take the following approach. The
dataset consisting of the observable discrepancies during the current time window ∆t is
split into a training part and a testing part. In the test phase we use the approximated
function φ̂physics to estimate the physical process settings Θ̂1

j that are consistent with the

observable errors ∆
{1}
t,j . Here we select ∆

{1}
t,j = ∆test

t,j for each j ∈ {test data set}. Note
that in this case, since we know what physics has been used for the current results, one can
take Θ̂

{1}
j to be the real parameter values Θ

{1}
j used to generate the test data. However, in

general, one selects ∆
{1}
t,j in an application-specific way and the corresponding parameters

need to be estimated.
Next, we reduce the desired forecast error level to ∆

{2}
t,j = ∆

{1}
t,j /2, and use the approx-

imated function φ̂physics to estimate the physical process setting Θ̂
{2}
j that corresponds to

this more accurate forecast. To identify the package setting that has the largest impact
on the observable error we monitor the variability in the predicted parameters Θ̂{2} − Θ̂{1}.
Specifically, the number of times the setting of a physical process in Θ̂2

j is different from

its setting in Θ̂1
j is an indicator of the variability in model prediction when that package is

changed. A higher variability in predicted physical packages implies a larger contribution
towards the model errors - as estimated by the ML model.
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3.3. Machine learning algorithms

In order to approximate the functions (9) and (11) discussed earlier we use regression
machine learning methods. Choosing a right learning algorithm to use is challenging as it
largely depends on the problem and the data available [2, 3, 33, 35]. Here, we use Random
Forests (RF) and Artificial Neural Networks (ANN) as our learning algorithms [37]. Both
RF and ANN algorithms tan handle non-linearity in regression and classification. Given that
the physical phenomena governing precipitation are highly nonlinear, and and atmospheric
dynamics is chaotic, we believe that RF and ANN approaches are well suited to capture the
associated features. We briefly review these techniques next.

3.3.1. Random forests

A random forest [5] is an ensemble based method that constructs multiple decision trees.
The principle idea behind ensemble methods is that a group of weak learners can come
together to form a strong learner [4, 5]. The decision tree is built top-down from observations
of target variables. The observation dataset is partitioned, smaller subsets are represented
in branches, and decisions about the target variables are represented in the leaves.

There are many specific decision-tree algorithms available, including ID3 (Iterative Di-
chotomiser 3) [44], C4.5 (successor of ID3) [45], CART (Classification And Regression Tree),
CHAID (CHi-squared Automatic Interaction Detector), and conditional inference trees [49].
If the dataset has multiple attributes, one can decide which attribute to place at the root
or at different levels of the tree by considering different criteria such as information gain or
the gini index [7].

Trees can be non-robust, with small changes in the tree leading to large changes in re-
gression results. Moreover, trees tend to over-fit the data [48]. The random forest algorithm
uses the bagging technique for building an ensemble of decision trees which are accurate
and powerful at handling large, high dimensional datasets. Moreover, the bagging technique
greatly reduces the variance [10]. For each tree in the forest, a bootstrap sample [4, 10] is
selected from the dataset and instead of examining all possible feature-splits, some subset
of the features is selected [29]. The node then splits on the best feature in the subset. By
using a random sample of features the correlation between trees in the ensemble decreases,
and the learning for each tree is much faster by restricting the features considered for each
node.

3.3.2. Artificial neural networks

ANN is a computational model inspired by human brain’s biological structure. ANN
consist of neurons and connections between the neurons (weights) which are organized in
layers. At least three layers of neurons (an input layer, a hidden layer, and an output layer)
are required for construction of a neural network, where the input layer distributes the input
signals to the first hidden layer. The feed-forward operation in a network passes information
to neurons in a subsequent hidden layer. The neurons combine this information, and the
output of each layer is obtained by passing the combined information through a differentiable
transfer function that can be log-sigmoid, hyperbolic tangent sigmoid, or linear transfer
function.
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In supervised learning the network is provided with samples from which it discovers
the relations of inputs and outputs. The learning problem consists of finding the optimal
parameters of network such that the error between the desired output and the output signal
of the network is minimized. The network first is initialized with randomly chosen weights
and then the error is back-propagated through the network using a gradient descent method.
The gradient of the error function is computed and used to modify weights and biases such
that the error between the desired output and the output signal of the network is minimized
[14, 47] . This process is repeated iteratively until the network output is close to the desired
output [20].

4. Numerical experiments

We apply the proposed learning models to the Weather Research and Forecasting model
[56] in order to:

• predict the bias in precipitation forecast caused by structural model errors,

• predict the statistics associated with the precipitation errors, and

• identify the specific physics packages that contribute most to precipitation forecast
errors for given meteorological conditions.

4.1. The WRF model

In this study we use the non-hydrostatic WRF model version 3.3. The simulation domain,
shown in Fig. 1, covers the continental United States and has dimensions of 60×73 horizontal
grid points in the west-east and south-north directions respectively, with a horizontal grid
spacing of 60km [54]. The grid has 60 vertical levels to cover the troposphere and lower
part of the stratosphere between the surface to approximately 20km. In all simulations,
the 6-hourly analysis from the National Centers for Environmental Prediction (NCEP) are
used as the initial and boundary conditions of the model [40]. The stage IV estimates are
available at an hourly temporal resolution over continental United States. For experimental
purposes, we use the stage IV NCEP analysis as a proxy for the true state of the atmosphere.
The simulation window begins at 6am UTC (Universal Time Coordinated) on May 1st
2017, and the simulation time is a six hour window time the same day. The “true” states
of the atmosphere are available using the NCEP analysis data hourly. All the numerical
experiments use the NCEP analysis data to run WRF model on May 1st 2017.

The model configuration parameters Θ represent various combinations of micro-physics
schemes, cumulus parameterizations, short wave, and long wave radiation schemes. Specif-
ically, each process is represented by the schema values of each physical parameter it uses,
as detailed in WRF model physics options and references [57]. The micro-physics option
provides atmospheric heat and moisture tendencies in atmosphere which also accounts for
the vertical flux of precipitation and the sedimentation process. The cumulus parameteriza-
tion is used to vertically redistribute heat and moisture independent of latent heating due to
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precipitation. The long wave radiation considers clear-sky and cloud upward and downward
radiation fluxes and the short wave radiation considers clear-sky and cloudy solar fluxes.

A total number of 252 combinations of the four physical modules are used in the sim-
ulations. The micro-physics schemes include: Kessler [26], Lin [30], WSM3 Hong [21],
WSM5 Hong [21], Eta (Ferrier), WSM6 [22], Goddard [50], Thompson [51], Morrison [36].
The cumulus physics schemes applied are: Kain-Fritsch [25], Betts-Miller-Janjic [23], Grell
Freitas[18]. The long wave radiation physics include: RRTM [32], Cam [9]. Short wave
radiation physics include: Dudhia [11], Goddard [8], Cam [9].

For each of the 252 different physics combinations, the effect of each physics combination
on precipitation is investigated. The NCEP analysis grid points are 428 × 614, while the
WRF computational model have 60×73 grid points. For obtaining the discrepancy between
the WRF forecast and NCEP analysis we linearly interpolate the analysis to transfer the
physical variables onto the model grid. Figure 1(a) and 1(b) shows the NCEP analysis at
6am and 12pm on 5/1/2017 which are used as initial condition and “true” (verification)
state, respectively. The WRF forecast corresponding to the physics micro-physics: Kessler,
cu-physics: Kain-Fritsch, ra-lw-physics: Cam , ra-sw-physics: Dudhia is illustrated in Figure
1(c). Figure 2 shows contours of discrepancies at 12pm (∆t=12pm) discussed in equation (5)
for two different physical combinations, which illustrates the effect that changing the physical
schemes has on the forecast.
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(a) NCEP analysis at 6am provides initial con-
ditions

(b) NCEP analysis at 12pm provides a proxy
for the true state of the atmosphere

(c) WRF forecast at 12pm corresponding to
the physics micro-physics: Kessler, cumulus
physics: Kain-Fritsch, long wave radiation
physics: Cam, short wave radiation physics:
Dudhia

Figure 1: Initial conditions, the analysis and the WRF forecast for the simulation time 12pm on 5/1/2017.
Shown in the plots are the accumulated precipitation in millimeter unit.
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(a) Micro-physics scheme: Kessler, cumulus physics:
Kain-Fritsch, short wave radiation: Cam, long wave
radiation: Dudhia
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(b) micro-physics scheme: Lin, cumulus physics:
Kain-Fritsc, short wave radiation: RRTM Mlawer,
long wave radiation: Cam

Figure 2: Shown in the plots are contours of observable discrepancies which are the differences in the
accumulated precipitation results of WRF forecast against the analysis data ∆t=12pm on 5/1/2017 for two
different physics combinations. The observation operator extracts the precipitation solution from the WRF
state vector.

4.2. Experiments for problem one: predicting pointwise precipitation forecast errors over a
small geographic region

We demonstrate our learning algorithms to forecast precipitation in the state of Virginia
on May 1st 2017 at 6pm. Our goal is to use the learning algorithms to correct the bias
created due to model errors and hence improve the forecast for precipitation. As described
in section 3.1, we learn the function φerror of equation (9) using the training data from the
previous forecast window (6am to 12pm):

φerror (Θ,∆τ ,oτ ,ot=12pm) ≈∆t=12pm, 7am ≤ τ < 12pm.

We use two learning algorithms to approximate the function φerror, namely, the RF and
ANN using Scikit-learn, machine learning library in Python [43]. The RF with ten trees
and CART learning tree algorithm is used. The ANN with six hidden layers and hyperbolic
tangent sigmoid activation function in each layer and linear activation function at last layer is
employed. The number of layers and number of neurons in each layer are tuned empirically.
For training purposes, we use the NCEP analysis of the May 1st 2017 at 6am as initial
conditions for the WRF model. The forecast window is 6 hours and the WRF model forecast
final simulation time is 12pm. The input features are:

• The physics combinations (Θ).

• The hourly WRF forecasts projected onto observation space oτ , am ≤ τ ≤ 12pm. The
WRF state (xt) includes all model variables such as temperature, pressure, precipi-
tation, etc. The observation operator extracts the precipitation portion of the WRF
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state vector, ot ≡ xprecipitation
t . Accordingly, ∆t is the discrepancy between WRF

precipitation forecast ot and the observed precipitation yt.

• The observed discrepancies at past times (∆τ , 7am ≤ τ < 12pm).

The output variable is the discrepancy between the NCEP analysis and the WRF forecast
at 12pm, i.e., the observable discrepancies for the current forecast window (∆t=12pm). In
fact, for each of the 252 different physical configurations, the WRF model forecast as well
as the difference between the WRF forecast and the analysis are provided as input-output
combinations for learning the function φerror. The number of grid points over the state of
Virginia is 14 × 12. Therefore for each physical combination we have 168 grid points, and
the total number of samples in the training data set is 252× 168 = 42, 336 with 15 features.

Both ANN and RF are trained with the above input-output combinations described
above and during the training phase, the learning model learns the effect of interaction
between different physical configurations on the WRF forecast and model error and obtains
the approximation to the function φerror which we denote by φ̂error. The goal is to have more
accurate forecast in the future time windows. We don’t have the analysis data of future
time windows but we can run WRF for future time windows and also predict the future
model error using the approximated function φ̂error. Once we obtain the predicted model
error we can use that information in order to raise the accuracy of WRF forecast. In the
testing phase we use the function φ̂error to predict the future forecast error ∆̂t=6pm given
the combination of physical parameters as well as the WRF forecast at time 6pm as input
features.

∆̂t=6pm ≈ φ̂error (Θ,∆τ ,oτ ,ot=6pm) , 1pm ≤ τ < 6pm.

To quantify the accuracy of the predicted error we calculate the Root Mean Squared
Error (RMSE) between the true and predicted discrepancies at 6pm:

RMSE =

√√√√ 1

n

n∑
i=1

(
∆̂i

t=6pm −∆i
t=6pm

)2

, (12)

where n = 168 is the number of grid points over Virginia,. ∆̂i
t=6pm is the predicted discrep-

ancy in the ith grid point, and ∆i
t=6pm is the ith actual discrepancy in the ith grid point.

The actual discrepancy is obtained as the difference between the NCEP analysis and WRF
forecast at time t = 6pm. This error metric is computed for each of the 252 different config-
urations of the physics. The minimum, maximum and average RMSE over the 252 runs is
reported in Table 1.
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minimum(RMSE) average(RMSE) maximum(RMSE)
ANN 1.264× 10−3 1.343× 10−3 5.212× 10−3

RF 1.841× 10−3 1.931× 10−3 7.9× 10−3

Table 1: The minimum, average, and maximum RMSE between the predicted ∆̂t=6pm and the true ∆t=6

over 252 physics combinations.

The predicted discrepancy in the observation space ∆̂t=6pm can be used to approximate
the discrepancy in the model space δ̂t=6pm using equation (10). Here all the grid points are
observed and therefore the error in the model space equal to the error in the observation
space. Next, the estimate forecast error can be used to correct the forecast bias caused by
model errors using (7), and hence to improve the forecast at 6pm: x̂t=6pm = xt=6pm + δ̂t=6pm.
Figure 3(a) shows the WRF forecast for 6pm for the state of Virginia using the following
physics packages (the physics options are given in parentheses):

• Micro-physics (Kessler),

• Cumulus-physics (Kain),

• Short-wave radiation physics (Dudhia),

• Long-wave radiation physics (Janjic).

Figure 3(b) shows the NCEP analysis at time 6pm, which is our proxy for the true state of
the atmosphere. The discrepancy between the NCEP analysis and the raw WRF forecast is
shown in the Figure 4(a). Using the model error prediction we can improve the WRF result
by adding the predicted bias to the WRF forecast. The discrepancy between the corrected
WRF forecast and the NCEP analysis is shown in the Figure 4(b). The results show a
considerable reduction of model errors as compared to the uncorrected forecast of Figure
4(a). Table 2 shows the minimum and average of original model error vs the improved model
errors.

minimum(∆t=6pm) average(∆t=6pm)
Original forecast 6.751× 10−2 5.025× 10−1

Improved forecast 2.134× 10−4 6.352× 10−2

Table 2: The minimum and average of ∆t=6pm for the original WRF forecast vs the improved forecast
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(a) Original WRF prediction (b) NCEP analysis

Figure 3: WRF prediction and NCEP analysis at 6pm on 5/1/2017. Zoom-in panels show the predictions
over Virginia.

(a) Discrepancy between original
WRF forecast and NCEP analysis

(b) Discrepancy between the cor-
rected WRF forecast and the
NCEP analysis

Figure 4: Discrepancy between WRF forecasts and the NCEP analysis over Virginia at 6pm on 5/1/2017.
The forecast correction clearly improves the model results.

4.3. Experiments for problem one: predicting the norm of precipitation forecast error over
the entire domain

We now seek to estimate the two-norm of precipitation model error over the entire
continental U.S., which gives a global metric for the accuracy of the WRF forecast, and
helps provide insight about the physics configurations that result in more accurate forecasts.
To this end the following mapping is constructed:

φerror (Θ, ‖oτ‖2, ‖∆τ‖2, ‖ot=12pm‖2, ōt=12pm) ≈ ‖∆t=12pm‖2, 7am ≤ τ < 12pm.
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To build the training dataset, we run WRF with each of the 252 different physical
configurations. The forecast window is 6 hours and the WRF model forecast final simulation
time is at 12pm. The hourly WRF forecast and discrepancy between the analysis and WRF
forecast is used as training features.

The input features are:

• different physics schemes (Θ),

• the norms of the WRF model predictions at previous time windows, as well as at the
current time (‖ot=12pm‖2, ‖oτ‖2, 7am ≤ τ < 12pm), and

• the norms of past observed discrepancies (‖∆τ‖2, 7am ≤ τ < 12pm).

The output variable is the norm of the discrepancy between WRF precipitation prediction
and the NCEP precipitation analysis for the current time window (‖∆t=12pm‖2).

We use two different learning algorithms, namely, RF with ten trees in the forest and
ANN with four hidden layers, the hyperbolic tangent sigmoid activation function in each
layer and linear activation function at last layer. The number of layers and neurons at each
layer is tuned empirically. The total number of samples in the training set is 252 with 15
of features. During the training phase the model learns the effect of interaction of different
physical configurations on model error and obtains the approximated function φ̂error.

In the test phase we feed the approximated function the model information from 1pm
to the endpoint of the next forecast window 6pm to predict the norm of the model error
‖∆̂t=6pm‖2.

φ̂error (Θ, ‖oτ‖2, ‖∆τ‖2, ‖ot=6pm‖2, ōt=6pm) ≈ ‖∆t=6pm‖2, 1pm ≤ τ < 6pm.

Validation of the learned error mapping. Table 3 shows the RMSE between the actual and
predicted norms of discrepancies for ANN and RF. The RMSE is taken over the 252 runs
with different physics combinations. Both learning models are doing well, with the ANN
giving slightly better results than the RF.

RMSE(‖∆̂t=6pm‖2, ‖∆t=6pm‖2)
ANN 2.6109× 10−3

RF 2.9188× 10−3

Table 3: Difference between predicted discrepancy norm ‖∆̂t=6pm‖2 and the reference discrepancy norm
‖∆t=6pm‖2. The RMSE is taken over all test cases.

Analysis of the best combination of physical packages. Based on our prediction of the norm
of model error, the best physics combination that leads to lowest norm of precipitation error
over the entire continental U.S. for the given meteorological conditions is:

• the BMJ cumulus parameterization, combined with
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• the WSM5 micro-physics,

• Cam long wave, and

• Dudhia short wave radiation physics.

According to the true model errors, the best physics combination leading to the lowest norm
of model error is achieved using the BMJ cumulus parameterization, combined with the
WSM5 micro-physics, Cam long wave, and Cam short wave radiation physics.

4.4. Experiments for problem two: identify the physical processes that contribute most to the
forecast uncertainty

The interaction of different physical processes greatly affects precipitation forecast, and
we are interested in identifying the major sources of model errors in WRF. To this end we
construct the physics mapping (11) using the norm and the statistical characteristics of the
model-data discrepancy (over the entire U.S.) as input features:

φphysics
(
∆̄t=12pm, ‖∆t=12pm‖2

)
≈ Θ.

Statistical characteristics include the mean, minimum, maximum, and variance of the filed
across all grid points over the continental U.S. Note that this is slightly different than (11)
where the inputs are the raw values of these discrepancies for each grid point. The output
variable is the combination of physical processes Θ that leads to model errors consistent
with the input pattern ∆̄t=12pm and ‖∆t=12pm‖2.

To build the dataset, the WRF model is simulated for each of the 252 different physical
configurations, and the mismatches between the WRF forecasts and the NCEP analysis at
the end of the current forecast window are obtained. Similar to the previous experiment,
the initial conditions used in the WRF model is the NCEP analysis for the May 1st 2017
at 6am. The forecast window is 6 hours and the WRF model forecast is obtained for time
12pm. The discrepancy between the NCEP analysis at 12pm and WRF forecast at 12pm
forms the observable discrepancy for the current forecast window ∆t=12pm. For each of the
252 different physical configurations, this process is repeated and statistical characteristics
of the WRF forecast model error ∆̄t=12pm, and the norm of model error ‖∆t=12pm‖2 are used
as feature values of the function φphysics.

Validation of the learned physics mapping. From all the collected data points, 80% (202
samples) are used for training the learning model, and the remaining 20% (50 samples) are
used for testing purposes.

The RF has default ten trees in the forest and ANN has four hidden layers and hyperbolic
tangent sigmoid activation function in each layer with linear activation function at last layer.
The number of layers and neurons at each layer is tuned empirically. The learning model
uses the training dataset to learn the approximate mapping φ̂physics. This function is applied
to the each of the 50 test samples ∆test

t=12pm to obtain the predicted physical combinations Θ̂1.

In order to evaluate these predictions, we run the WRF model again with the Θ̂1 physical
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setting and obtain the new forecast ôt=12pm, and the corresponding observable discrepancy
∆̂test

t=12pm. The RMSE between the norm of actual observable discrepancies and the norm of
predicted discrepancies are shown in Table 4. The small values of the difference demonstrates
the performance of the learning algorithm.

RMSE(‖∆̂test
t=12pm‖2, ‖∆test

t=12pm‖2)
ANN 4.1376× 10−3

RF 5.8214× 10−3

Table 4: The RMSE between estimated discrepancy using predicted physical combinations ∆̂test
t=12pm and the

reference discrepancy ∆test
t=12pm.

Analysis of variability in physical settings. We repeat the test phase for each of the 50 test
samples with the scaled values of observable discrepancies ∆test

t=12pm/2 as inputs, and obtain

the predicted physical combinations Θ̂2. Large variability in the predicted physical settings
Θ̂ indicate that the respective physical packages variability have a strong influence on the
WRF forecast error. We count the number of times the predicted physics Θ̂2 is different
from Θ̂1 when the input data spans the entire test data set.

The results shown in Figure 5 indicate that micro-physics and cumulus physics are not
too sensitive to the change of input data, whereas short-wave and long-wave radiation physics
are quite sensitive to changes in the input data. Therefore our learning model indicates that
having an accurate short-wave and long-wave radiation physics package will aid in greatly
reducing the uncertainty in precipitation forecasts due to missing/incorrect physics.

5. Conclusions

This study proposes a novel use of machine learning techniques to understand, predict,
and reduce the uncertainty in the WRF model precipitation forecasts due to the interaction
of several physical processes included in the model.

We construct probabilistic approaches to learn the relationships between the configura-
tion of the physical processes used in the simulation and the observed model forecast errors.
These relationships are then used to solve two important problems related to model errors,
as follows: estimating the systematic model error in a quantity of interest at future times,
and identifying the physical processes that contribute most to the forecast uncertainty in a
given quantity of interest under specified conditions.

Numerical experiments are carried out with the WRF model using the NCEP analyses
as a proxy for the real state of the atmosphere. Ensembles of model runs with different pa-
rameter configurations are used to generate the training data. Random forests and Artificial
neural network models are used to learn the relationships between physical processes and
forecast errors. The experiments validate the new approach, and illustrates how it is able
to estimate model errors, indicate best model configurations, and pinpoint to those physical
packages that influence most the WRF prediction accuracy.
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Figure 5: Frequency of change in the physics with respect to change in the input data from ∆test
t=12pm to

∆test
t=12pm/2. Each data set contains 50 data points, and we report here the number of changes of each

package.

While the numerical experiments are done with WRF, and are focused on forecasting
precipitation, the methodology developed herein is general and can be applied to the study
of errors in other models, for other quantities of interest, and for learning additional rela-
tionships between model physics and model errors.
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