Skip to main content

From Differential Equations to Multilayer Neural Network Models

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2019 (ISNN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11554))

Included in the following conference series:

  • 2103 Accesses

Abstract

A method for constructing multilayer neural network approximations of solutions of differential equations, based on the finite difference method, is proposed. The advantage of the method is the possibility of obtaining a neural network model of arbitrarily high accuracy without a time-consuming learning procedure. The solution is given by an analytical expression, explicitly including the parameters of the problem. The resulting neural network can, if necessary, be retrained according to the usual algorithm. The method is illustrated by the example of solving a particular ordinary second-order differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  2. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998)

    Google Scholar 

  3. Dissanayake, M.W.M.G., Phan-Thien, N.: Neural-network-based approximations for solving partial differential equations. Commun. Numer. Methods Eng. 10(3), 195–201 (1994)

    Google Scholar 

  4. Fasshauer, G.E.: Solving differential equations with radial basis functions: multilevel methods and smoothing. Adv. Comput. Math. 11, 139–159 (1999)

    Google Scholar 

  5. Fornberg, B., Larsson, E.A.: Numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)

    Google Scholar 

  6. Galperin, E., Pan, Z., Zheng, Q.: Application of global optimization to implicit solution of partial differential equations. Comput. Math. Appl. 25(10/11), 119–124 (1993)

    Google Scholar 

  7. Galperin, E., Zheng, Q.: Solution and control of PDE via global optimization methods. Comput. Math. Appl. 25(10/11), 103–118 (1993)

    Google Scholar 

  8. Sharan, M., Kansa, E.J., Gupta, S.: Application of the multiquadric method to the numerical solution of elliptic partial differential equations. Appl. Math. Comput. 84, 275–302 (1997)

    Google Scholar 

  9. Vasilyev, A., Tarkhov, D., Guschin, G.: Neural networks method in pressure gauge modeling. In: Proceedings of the 10th IMEKO TC7 International Symposium on Advances of Measurement Science, Saint-Petersburg, Russia, vol. 2, pp. 275–279 (2004)

    Google Scholar 

  10. Tarkhov, D., Vasilyev, A.: New neural network technique to the numerical solution of mathematical physics problems. I: simple problems. Opt. Mem. Neural Netw. (Inf. Opt.) 14(1), 59–72 (2005)

    Google Scholar 

  11. Tarkhov, D., Vasilyev, A.: New neural network technique to the numerical solution of mathematical physics problems. II: complicated and nonstandard problems. Opt. Mem. Neural Netw. (Inf. Opt.) 14(2), 97–122 (2005)

    Google Scholar 

  12. Vasilyev, A., Tarkhov, D.: Mathematical models of complex systems on the basis of artificial neural networks. Nonlinear Phenom. Complex Syst. 17(2), 327–335 (2014)

    Google Scholar 

  13. Shemyakina, T.A., Tarkhov, D.A., Vasilyev, A.N.: Neural network technique for processes modeling in porous catalyst and chemical reactor. In: Cheng, L., Liu, Q., Ronzhin, A. (eds.) ISNN 2016. LNCS, vol. 9719, pp. 547–554. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40663-3_63

    Google Scholar 

  14. Gorbachenko, V.I., Lazovskaya, T.V., Tarkhov, D.A., Vasilyev, A.N., Zhukov, M.V.: Neural network technique in some inverse problems of mathematical physics. In: Cheng, L., Liu, Q., Ronzhin, A. (eds.) ISNN 2016. LNCS, vol. 9719, pp. 310–316. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40663-3_36

    Google Scholar 

  15. Budkina, E.M., Kuznetsov, E.B., Lazovskaya, T.V., Leonov, S.S., Tarkhov, D.A., Vasilyev, A.N.: Neural network technique in boundary value problems for ordinary differential equations. In: Cheng, L., Liu, Q., Ronzhin, A. (eds.) ISNN 2016. LNCS, vol. 9719, pp. 277–283. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40663-3_32

    Google Scholar 

  16. Lozhkina, O., Lozhkin, V., Nevmerzhitsky, N., Tarkhov, D., Vasilyev, A.: Motor transport related harmful PM2.5 and PM10: from on road measurements to the modelling of air pollution by neural network approach on street and urban level. J. Phys.: Conf. Ser. 772 (2016). http://iopscience.iop.org/article/10.1088/1742–6596/772/1/012031

  17. Kaverzneva, T., Lazovskaya, T., Tarkhov, D., Vasilyev, A.: Neural network modeling of air pollution in tunnels according to indirect measurements. J. Phys.: Conf. Ser. 772 (2016). http://iopscience.iop.org/article/10.1088/1742-6596/772/1/012035

  18. Lazovskaya, T.V., Tarkhov, D.A., Vasilyev, A.N.: Parametric neural network modeling in engineering. Recent Patents Eng. 11(1), 10–15 (2017)

    Google Scholar 

  19. Antonov, V., Tarkhov, D., Vasilyev, A.: Unified approach to constructing the neural network models of real objects. Part 1. Math. Models Methods Appl. Sci. 41(18), 9244–9251 (2018)

    Google Scholar 

  20. Lazovskaya, T., Tarkhov, D.: Multilayer neural network models based on grid methods. In: IOP Conference Series: Materials Science and Engineering, vol. 158 (2016). http://iopscience.iop.org/article/10.1088/1757-899X/158/1/01206

  21. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problem. Springer, Berlin (1987). https://doi.org/10.1007/978-3-662-12607-3

    Google Scholar 

  22. Bolgov, I., Kaverzneva, T., Kolesova, S., Lazovskaya, T., Stolyarov, O., Tarkhov, D.: Neural network model of rupture conditions for elastic material sample based on measurements at static loading under different strain rates. J. Phys.: Conf. Ser. 772 (2016). http://iopscience.iop.org/article/10.1088/1742-6596/772/1/012032

  23. Aranda-Iglesias, D., Vadillo, G., Rodríguez-Martínez, J.A., Volokh, K.Y.: Modeling deformation and failure of elastomers at high strain rates. Mech. Mater. 104, 85–92 (2017)

    Google Scholar 

  24. Zéhil, G.-P., Gavin, H.P.: Unified constitutive modeling of rubber-like materials under diverse loading conditions. Int. J. Eng. Sci. 62, 90–105 (2013)

    Google Scholar 

  25. Hearle, J.W.S.: One-Dimensional Textiles. Handbook of Technical Textiles. Elsevier, Amsterdam (2016)

    Google Scholar 

  26. McKenna, H.A., Hearle, J.W.S., O’Hear, N.: Handbook of Fibre Rope Technology. Handbook of Fibre Rope Technology. Elsevier, Amsterdam (2004)

    Google Scholar 

  27. Weller, S.D., Johanning, L., Davies, P., Banfield, S.J.: Synthetic mooring ropes for marine renewable energy applications. Renew. Energy 83, 1268–1278 (2015)

    Google Scholar 

  28. Vasilyev, A.N., Tarkhov, D.A., Tereshin, V.A., Berminova, M.S., Galyautdinova, A.R.: Semi-empirical neural network model of real thread sagging. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V. (eds.) NEUROINFORMATICS 2017. SCI, vol. 736, pp. 138–144. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66604-4_21

    Google Scholar 

  29. Zulkarnay, I.U., Kaverzneva, T.T., Tarkhov, D.A., Tereshin, V.A., Vinokhodov, T.V., Kapitsin, D.R.: A two-layer semi empirical model of nonlinear bending of the cantilevered beam. J. Phys.: Conf. Ser. 1044 (2018). https://iopscience.iop.org/article/10.1088/1742-6596/1044/1/012005/pdf

  30. Bortkovskaya, M.R., et al.: Modeling of the membrane bending with multilayer semi-empirical models based on experimental data. In: Proceedings of the 2nd International Scientific Conference “Convergent Cognitive Information Technologies” (Convergent’2017) (2017). http://ceur-ws.org/Vol-2064/paper18.pdf

Download references

Acknowledgments

The article was prepared on the basis of scientific research carried out with the financial support of the Russian Science Foundation grant (project No. 18-19-00474).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina F. Malykhina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaverzneva, T.T., Malykhina, G.F., Tarkhov, D.A. (2019). From Differential Equations to Multilayer Neural Network Models. In: Lu, H., Tang, H., Wang, Z. (eds) Advances in Neural Networks – ISNN 2019. ISNN 2019. Lecture Notes in Computer Science(), vol 11554. Springer, Cham. https://doi.org/10.1007/978-3-030-22796-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22796-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22795-1

  • Online ISBN: 978-3-030-22796-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics