Skip to main content

Unsupervised Feature Selection Using RBF Autoencoder

  • Conference paper
  • First Online:
  • 2220 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11554))

Abstract

In this paper, a novel learning approach to solve unsupervised feature selection in high-dimensional data is proposed, namely Radial Basis Function Autoencoder feature selection (RAFS). This method based on autoencoder uses the radial basis function to achieve mapping instead of the weight. We also consider penalty to give a powerful constraint on redundant features. In extensive experiments, our method shows its outperformance in fair comparison with several other methods.

This work was supported in part by the National Natural Science Foundation of China under Grant 6130507, in part by the Natural Science Foundation of Shandong Province under Grant ZR2015AL014 and Grant ZR201709220208, and in part by the Fundamental Research Funds for the Central Universities under Grant 15CX08011A and Grant 18CX02036A.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 3(02), 185–205 (2003)

    Article  Google Scholar 

  2. Forman, G.: An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)

    MATH  Google Scholar 

  3. Akay, M.F.: Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst. Appl. 36(2–part–P2), 3240–3247 (2009)

    Article  Google Scholar 

  4. Ding, S., Zhu, H., Jia, W., Su, C.: A survey on feature extraction for pattern recognition. Artif. Intell. Rev. 37(3), 169–180 (2012)

    Article  Google Scholar 

  5. Wiatowski, T., Bolcskei, H.: A mathematical theory of deep convolutional neural networks for feature extraction. IEEE Trans. Inf. Theory 1(1), 1845–1866 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Basu, T., Murthy, C.A.: Effective text classification by a supervised feature selection approach. In: 12th IEEE International Conference on Data Mining Workshops, Brussels, pp. 918–925. IEEE Press (2013)

    Google Scholar 

  7. Chakraborty, R., Pal, N.R.: Feature selection using a neural framework with controlled redundancy. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 35–50 (2015)

    Article  MathSciNet  Google Scholar 

  8. Xu, Z., King, I., Lyu, R.T., Jin, R.: Discriminative semi-supervised feature selection via manifold regularization. IEEE Trans. Neural Netw. 21(7), 1033–1047 (2010)

    Article  Google Scholar 

  9. Zhao, J.: Locality sensitive semi-supervised feature selection. Neurocomputing 71(10), 1842–1849 (2008)

    Article  Google Scholar 

  10. Kalakech, M., Biela, P., Macaire, L., Hamad, D.: Constraint scores for semi-supervised feature selection: a comparative study. Pattern Recogn. Lett. 32(5), 656–665 (2011)

    Article  Google Scholar 

  11. Peña, J.M., Nilsson, R.: On the complexity of discrete feature selection for optimal classification. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1517–1522 (2010)

    Article  Google Scholar 

  12. Sotoca, J.M., Pla, F.: Supervised feature selection by clustering using conditional mutual information-based distances. Pattern Recogn. 43(6), 2068–2081 (2010)

    Article  MATH  Google Scholar 

  13. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

    Article  MATH  Google Scholar 

  14. Zhou, X., Tuck, D.P.: MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Bioinformatics 23(9), 1106–1114 (2007)

    Article  Google Scholar 

  15. Guyon, I.: Pattern classification. Pattern Anal. Appl. 44(1), 87–87 (1998)

    MathSciNet  Google Scholar 

  16. He, X.: Locality Preserving Projections. University of Chicago, Chicago (2005)

    Google Scholar 

  17. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: 19th Advances in Neural Information Processing Systems, Vancouver, pp. 507–514. NIPS Press (2005)

    Google Scholar 

  18. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  19. Banerjee, M., Pal, N.: Unsupervised feature selection with controlled redundancy (UFeSCoR). IEEE Trans. Knowl. Data Eng. 27(12), 3390–3403 (2015)

    Article  Google Scholar 

  20. Han, K., Wang, Y., Zhang, C., Li, C., Xu, C.: Autoencoder inspired unsupervised feature selection. In: 43th IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary. IEEE Press (2018)

    Google Scholar 

  21. Meng, K., Dong, Z.Y., Wang, D.H., Wong, K.P.: A self-adaptive RBF neural network classifier for transformer fault analysis. IEEE Trans. Power Syst. 25(3), 1350–1360 (2010)

    Article  Google Scholar 

  22. Han, H.G., Qiao, J.F., Chen, Q.L.: Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network. Control Eng. Pract. 20(4), 465–476 (2012)

    Article  Google Scholar 

  23. Wilamowski, B., Cecati, C., Kolbusz, J., Rozycki, P., Siano, P.: A novel RBF training algorithm for short-term electric load forecasting and comparative studies. IEEE Trans. Ind. Electron. 62(10), 6519–6529 (2015)

    Article  Google Scholar 

  24. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., Talebi, H.A.: Application of RBF neural networks and unscented transformation in probabilistic power-flow of microgrids including correlated wind/pv units and plug-in hybrid electric vehicles. Simul. Model. Pract. Theory 72, 51–68 (2017)

    Article  Google Scholar 

  25. Hartman, E.J., Keeler, J.D., Kowalski, J.M.: Layered neural networks with gaussian hidden units as universal approximations. Neural Comput. 2(2), 210–215 (1990)

    Article  Google Scholar 

  26. Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Comput. 1(2), 281–294 (1989)

    Article  Google Scholar 

  27. Lee, S.: A Gaussian potential function network with hierarchically self-organizing learning. Neural Netw. 4(2), 207–224 (1991)

    Article  MathSciNet  Google Scholar 

  28. Chakraborty, R., Pal, N.R.: Feature selection using a neural framework with controlled redundancy. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 35–50 (2014)

    Article  MathSciNet  Google Scholar 

  29. Meng, J.E., Wu, S., Lu, J.: Face recognition with radial basis function (RBF) neural networks. IEEE Trans Neural Netw. 13(3), 697–710 (2002)

    Article  Google Scholar 

  30. Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2(1), 11–22 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Haykin, S.: Neural networks and learning machines. McMaster University, Ontario (2009)

    Google Scholar 

  32. Haykin, S.: Neural Networks A Comprehensive Foundation. McMaster University, Ontario (1994)

    MATH  Google Scholar 

  33. Li, Z., Yang, Y., Liu, J., Zhou, X., Lu, H.: Unsupervised feature selection using nonnegative spectral analysis. In: 26th AAAI Conference on Artificial Intelligence, Toronto, pp. 1026–1032. AAAI Press (2012)

    Google Scholar 

  34. Shi, L., Du, L., Shen, Y.D.: Robust spectral learning for unsupervised feature selection. In: 14th IEEE International Conference on Data Mining, Shenzhen, pp. 977–982. IEEE Press (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, L., Zhang, Z., Xie, X., Chen, H., Wang, J. (2019). Unsupervised Feature Selection Using RBF Autoencoder. In: Lu, H., Tang, H., Wang, Z. (eds) Advances in Neural Networks – ISNN 2019. ISNN 2019. Lecture Notes in Computer Science(), vol 11554. Springer, Cham. https://doi.org/10.1007/978-3-030-22796-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22796-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22795-1

  • Online ISBN: 978-3-030-22796-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics