Skip to main content

A Novel Memristor-CMOS Hybrid Full-Adder and Its Application

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2019 (ISNN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11555))

Included in the following conference series:

  • 1901 Accesses

Abstract

Memristor is a nano-scale component with information storage capability and binary characteristics. The memristive logic circuit composed of the structure is simple in structure and complete in logic function, and can be applied to logic operation and storage. However, the existing memristive logic circuit has a single function, the component size is too large, and the delay step is too much, so that the circuit efficiency is low. This paper proposes a novel memristor-CMOS hybrid full adder. Compared with MAD Gates, IMPLY logic circuit significantly reduces the operation steps, the circuit has no time delay, and optimizes the requirements of circuit components. Based on the proposed circuit, a novel N-bit subtractor is designed, which can be combined with the full-adder to implement composite logic operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18(5), 507–519 (1971)

    Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., et al.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Google Scholar 

  3. Williams, R.: How We Found the Missing Memristor. IEEE Press (2008)

    Google Scholar 

  4. Biolek, Z., Biolek, D., Biolkova, V.: SPICE model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2008)

    Google Scholar 

  5. Vourkas, I., Batsos, A., Sirakouli, G.C.: SPICE modeling of nonlinear memristive behavior. Int. J. Circ. Theory Appl. 43(5), 553–565 (2015)

    Google Scholar 

  6. Emara, A., Ghoneima, M., El-Dessouky, M.: Differential 1T2M memristor memory cell for single/multi-bit RRAM modules. In: Computer Science and Electronic Engineering Conference, pp. 69–72. IEEE, Colchester (2014)

    Google Scholar 

  7. Shaarawy, N., Ghoneima, M., Radwan, A.G.: 2T2M memristor-based memory cell for higher stability RRAM modules. In: 2015 IEEE International Symposium on Circuits and Systems, pp. 1418–1421 (2015)

    Google Scholar 

  8. Luo, L., Hu, X., Duan, S., Dong, Z., Wang, L.: Multiple memristor series-parallel connections with use in synaptic circuit design. IET Circ. Devices Syst. 11(2), 123–134 (2017)

    Google Scholar 

  9. Jiang, Z., Duan, S., Wang, L., et al.: A threshold adaptive memristor model analysis with application in image storage. In: International Conference on Information Science and Technology, pp. 449–454. IEEE, Jeju Island (2015)

    Google Scholar 

  10. Duan, S., Hu, X., Wang, L., et al.: Memristor-based RRAM with applications. Sci. China (Inf. Sci.) 55(6), 1446–1460 (2012)

    Google Scholar 

  11. Hu, X., Duan, S., Wang, L.: Memristive multilevel memory with applications in audio signal storage. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds.) AICI 2011. LNCS (LNAI), vol. 7002, pp. 228–235. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23881-9_29

    Google Scholar 

  12. Zhang, Y., Shen, Y., Wang, X., et al.: A novel design for memristor-based logic switch and crossbar circuits. IEEE Trans. Circ. Syst. I Regul. Pap. 62(5), 1402–1411 (2015)

    Google Scholar 

  13. Zhang, Y., Shen, Y., Wang, X., et al.: A novel design for a memristor-based or gate. IEEE Trans. Circ. Syst. II Express Briefs 62(8), 781–785 (2015)

    Google Scholar 

  14. Sarwar, S.S., Saqueb, S.A.N., Quaiyum, F., et al.: Memristor-based nonvolatile random access memory: hybrid architecture for low power compact memory design. IEEE Access 1(1), 29–34 (2013)

    Google Scholar 

  15. Borghetti, J., Snider, G.S., Kuekes, P.J., et al.: Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873 (2011)

    Google Scholar 

  16. Kvatinsky, S., Satat, G., Wald, N., et al.: Memristor-based material implication (IMPLY) logic: design principles and methodologies. IEEE Trans. Very Large Scale Integr. Syst. 22(10), 2054–2066 (2014)

    Google Scholar 

  17. Guckert, L., Swartzlander, E.E.: MAD gates—memristor logic design using driver circuitry. IEEE Trans. Circ. Syst. II Express Briefs 64(2), 171–175 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shukai Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, H., Duan, S., Wang, L. (2019). A Novel Memristor-CMOS Hybrid Full-Adder and Its Application. In: Lu, H., Tang, H., Wang, Z. (eds) Advances in Neural Networks – ISNN 2019. ISNN 2019. Lecture Notes in Computer Science(), vol 11555. Springer, Cham. https://doi.org/10.1007/978-3-030-22808-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22808-8_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22807-1

  • Online ISBN: 978-3-030-22808-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics