Skip to main content

Multivariate Ovulation Window Detection at OvuFriend

  • Conference paper
  • First Online:
Book cover Rough Sets (IJCRS 2019)

Abstract

We present new results related to retrospective detection of ovulation days basing on information entered by the users of one of online platforms available in the market. Comparing to our previous studies, we improve the accuracy of algorithms which are based on evaluation and synthesis of multivariate data sources. Results are reported for 224 menstrual cycles which were labeled by medical experts. In the experiments, we pay special attention to the aspect of uncertainty associated with the tagging process.

Co-financed by the EU Smart Growth Operational Programme 2014–2020 under the project “Development of New World Scale Solutions in the Field of Machine Learning Supporting Family Planning and Overcoming the Infertility Problem”, POIR.01.01.01-00-0831/17-00.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sosnowski, Ł., et al.: Similarity-based detection of fertile days at OvuFriend. In: Proceedings of IEEE BigData 2018, pp. 2663–2668 (2018)

    Google Scholar 

  2. Sosnowski, Ł.: Compound objects comparators in application to similarity detection and object recognition. Trans. Rough Sets 21, 169–300 (2019)

    Article  Google Scholar 

  3. Scherwitzl, E.B., Hirschberg, A.L., Scherwitzl, R.: Identification and prediction of the fertile window using NaturalCycles. Eur. J. Contracept. Reprod. Health Care 20(5), 403–408 (2015)

    Article  Google Scholar 

  4. Su, H.W., Yi, Y.C., Wei, T.Y., Chang, T.C., Cheng, C.M.: Detection of ovulation, a review of currently available methods. Bioeng. Transl. Med. 2(3), 238–246 (2017)

    Article  Google Scholar 

  5. Sohda, S., Suzuki, K., Igari, I.: Relationship between the menstrual cycle and timing of ovulation revealed by new protocols: analysis of data from a self-tracking health app. J. Med. Internet Res. 19(11), e391 (2017)

    Article  Google Scholar 

  6. Koch, M., et al.: Improving usability and pregnancy rates of a fertility monitor by an additional mobile application: results of a retrospective efficacy study of Daysy and DaysyView app. Reprod. Health 15, 37 (2018)

    Article  Google Scholar 

  7. Shilaih, M., Goodale, B.M., Falco, L., Kübler, F., De Clerck, V., Leeners, B.: Modern fertility awareness methods: wrist wearables capture the changes of temperature associated with the menstrual cycle. Biosci. Rep. 38(6) (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265623/

    Article  Google Scholar 

  8. Kutt, K., Nalepa, G.J., Giżycka, B., Jemioło, P., Adamczyk, M.: BandReader - a mobile application for data acquisition from wearable devices in affective computing experiments. In: Proceedings of HSI 2018, pp. 42–48 (2018)

    Google Scholar 

  9. Afanasieva, T., Yarushkina, N., Toneryan, M., Zavarzin, D., Sapunkov, A., Sibirev, I.: Time series forecasting using fuzzy techniques. In: Proceedings of IFSA-EUSFLAT 2015, pp. 1068–1075 (2015)

    Google Scholar 

  10. Fukaya, K., Kawamori, A., Osada, Y., Kitazawa, M., Ishiguro, M.: The forecasting of menstruation based on a state-space modeling of basal body temperature time series. Stat. Med. 36(21), 3361–3379 (2017)

    Article  MathSciNet  Google Scholar 

  11. Iglesias, F., Kastner, W.: Analysis of similarity measures in times series clustering for the discovery of building energy patterns. Energies 6(2), 579–597 (2013)

    Article  Google Scholar 

  12. Tsumoto, S., Iwata, H., Hirano, S., Tsumoto, Y.: Similarity-based behavior and process mining of medical practices. Future Gener. Comput. Syst. 33, 21–31 (2014)

    Article  Google Scholar 

  13. Yimam, S.M., Biemann, C., Majnaric, L., Šabanović, Š., Holzinger, A.: Interactive and iterative annotation for biomedical entity recognition. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds.) BIH 2015. LNCS (LNAI), vol. 9250, pp. 347–357. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23344-4_34

    Chapter  Google Scholar 

  14. Hu, B., Jiang, X., de Souza, E.N., Pelot, R., Matwin, S.: Identifying fishing activities from AIS data with conditional random fields. In: Proceedings of FedCSIS 2016, pp. 47–52 (2016)

    Google Scholar 

  15. Dunselman, G.A.J., et al.: ESHRE guideline: management of women with endometriosis. Hum. Reprod. 29(3), 400–412 (2014)

    Article  Google Scholar 

  16. Meena, D.K., Manimekalai, D.M., Rethinavalli, S.: Implementing neural fuzzy rough set and artificial neural network for predicting PCOS. Int. J. Recent Innov. Trends Comput. Commun. 3(12), 6722–6727 (2015)

    Google Scholar 

  17. Fox, F., Aggarwal, V.R., Whelton, H., Johnson, O.: A data quality framework for process mining of electronic health record data. In: Proceedings of ICHI 2018, pp. 12–21 (2018)

    Google Scholar 

  18. Szczuka, M.S., Sosnowski, Ł., Krasuski, A., Kreński, K.: Using domain knowledge in initial stages of KDD: optimization of compound object processing. Fundamenta Informaticae 129(4), 341–364 (2014)

    MathSciNet  Google Scholar 

  19. Ślęzak, D., Glick, R., Betliński, P., Synak, P.: A new approximate query engine based on intelligent capture and fast transformations of granulated data summaries. J. Intell. Inf. Syst. 50(2), 385–414 (2018)

    Article  Google Scholar 

  20. Emrouznejad, A., Marra, M.: Ordered weighted averaging operators 1988–2014: a citation-based literature survey. Int. J. Intell. Syst. 29(11), 994–1014 (2014)

    Article  Google Scholar 

  21. Kuncheva, L.I., Diez, J.J.R.: A weighted voting framework for classifiers ensembles. Knowl. Inf. Syst. 38(2), 259–275 (2014)

    Article  Google Scholar 

  22. Sosnowski, Ł., Szczuka, M.: Defuzzyfication in interpretation of comparator networks. In: Medina, J., et al. (eds.) IPMU 2018, Part II. CCIS, vol. 854, pp. 467–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91476-3_39

    Chapter  Google Scholar 

  23. Widz, S.: Introducing NRough framework. In: Polkowski, L., et al. (eds.) IJCRS 2017, Part I. LNCS (LNAI), vol. 10313, pp. 669–689. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60837-2_53

    Chapter  Google Scholar 

  24. Skowron, A., Wang, H., Wojna, A., Bazan, J.: A hierarchical approach to multimodal classification. In: Ślęzak, D., Yao, J.T., Peters, J.F., Ziarko, W., Hu, X. (eds.) RSFDGrC 2005, Part II. LNCS (LNAI), vol. 3642, pp. 119–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11548706_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Ślęzak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fedorowicz, J. et al. (2019). Multivariate Ovulation Window Detection at OvuFriend. In: Mihálydeák, T., et al. Rough Sets. IJCRS 2019. Lecture Notes in Computer Science(), vol 11499. Springer, Cham. https://doi.org/10.1007/978-3-030-22815-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22815-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22814-9

  • Online ISBN: 978-3-030-22815-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics