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Abstract. Cohesive powers of computable structures can be viewed as
effective ultraproducts over effectively indecomposable sets called cohe-
sive sets. We investigate the isomorphism types of cohesive powers I1cL
for familiar computable linear orders L. If £ is isomorphic to the ordered
set of natural numbers N and has a computable successor function, then
IIc L is isomorphic to N+Q x Z. Here, + stands for the sum and x for the
lexicographical product of two orders. We construct computable linear
orders £1 and L2 isomorphic to N, both with noncomputable successor
functions, such that IIcL; is isomorphic to N 4+ Q x Z, while IIc Lo is
not. While cohesive powers preserve all IT3 and X9 sentences, we provide
new examples of IT sentences & and computable structures M such that
ME @ while lIc M ED.

1 Introduction and Preliminaries

Skolem was the first to construct a countable nonstandard model of true arith-
metic. Various countable nonstandard models of (fragments of) arithmetic have
been later studied by Feferman, Scott, Tennenbaum, Hirschfeld, Wheeler, Ler-
man, McLaughlin and others (see [6], [8], [7], [9]). The following definition, and
other notions from computability theory can be found in [10].
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Definition 1. (i) An infinite set C C w is cohesive (r-cohesive) if for every
c.e. (computable) set W, either W N C or W N C is finite.

(ii)) A set M is maximal (r-maximal) if M is c.e. and M is cohesive (t-
cohesive).

(iii) If M is mazimal, then M is called co-mazimal.

(iv) A set B is quasimaximal if it is the intersection of finitely many mazimal
sets.

In the definition above w denotes the set of natural numbers. We will use
=*(and C*) to refer to equality (inclusion) of sets up to finitely many elements.
Let A be a fixed r-cohesive set. For computable functions f and g, Feferman,
Scott, and Tennenbaum (see [0]) defined an equivalence relation f ~4 g if A C*
{n: f(n) = g(n)}. They then proved that the structure R/~ 4, with domain the
set of recursive functions modulo ~ 4, is a model of only a fragment of arithmetic.
They constructed a particular IT9 sentence @ such that for the standard model
of arithmetic, NV, we have A E & but R/~ ¥ ®. The sentence ¢ provided in [0]
essentially uses Kleene’s T predicate.

Cohesive powers of computable structures are effective versions of ultrapow-
ers. They have been introduced in [2] in relation to the study of automorphisms
of the lattice £*(V,) of effective vector spaces. Cohesive powers of the field
of rational numbers were used in [I] to characterize certain principal filters of
L* (Vo). Their isomorphism types and automorphisms were further studied in
[4]. They were also used in [I] and [3] to find interesting orbits in £*(Vi).

The goal of this paper is to show that the presentation of a computable
structure matters for the isomorphism type of its cohesive power. We give com-
putable presentations of the ordered set of natural numbers such that their co-
hesive powers are not elementary equivalent. Furthermore, we provide examples
of computable structures M and II9 sentences ¥, which do not use Kleene’s T
predicate, such that M E ¥ while the cohesive power IIc M E'W. We will now
present some additional definitions and known results.

Definition 2. [Z] Let A be a computable structure for a computable language L
and with domain A. Let C C w be a cohesive set. The cohesive power of A over
C, denoted by IIc A, is a structure B for L defined as follows:

(i) Let D = {¢ | ¢ : w — A is a partial computable function, and C C*
dom(¢p)}.

For 1,92 € D, define o1 =c ¢, iff C C* {x: p1(x) = @2(x)d}.

Let B=(D/ =¢) be the domain of B =IIc.A

(ii) If f € L is an n-ary function symbol, then fB is an n-ary function on B
such that for every [p1],...,[pn] € B, fB([¢1],--.,[¢n]) = [¢], where for every

x € A,
p(x) ~ fA((pl (@), n(2)),
where >~ stands for equality of partial functions.
(iii) If P € L is an m-ary predicate symbol, then P® is an m-ary relation on
B such that for every [p1], ..., [¢m] € B,

PE([p1],- . lom]) & C C* {z € A| PH(p1(2),..., pm(@))}.



(i) If ¢ € L is a constant symbol, then cB is the equivalence class of the (total)

computable function on A with constant value c.

The following is the fundamental theorem of cohesive powers due to Dimitrov
(see [2)).

Theorem 3. Let C' be a cohesive set and let A and B be as in the definition
above.

1. Ift(y1,. .., yn) is a termin L and [p1], ..., [on] € B, then [T5([¢1], ..., [¢n])]
is the equivalence class of a partial computable function such that

™ (lprl, . [ (@) = T4(01(), .., ().

2. If ®(y1, .., yn) is a formula in L that is a Boolean combination of X9 and
IIY formulas and [p1],. .., [en] € B, then

BE®([erl, .. lon]) if C S {z: Al B(e1(2), ..., on(2))}-

3. If @ is a II9 (or X9) sentence in L, then BFE & iff AF .
4. If @ is a IIY sentence in L, then B E & implies AF .

Note that A is a substructure of B =II¢.A. For ¢ € A let [p.] € B be the
equivalence class of the total function ¢, such that ¢.(x) = ¢ for every z € w.
The map d : A — B such that d(c) = [p.] is called canonical embedding of A
into B.

2 Cohesive Powers of Linear Orders

We will now investigate various algebraic and computability-theoretic properties
of cohesive powers of linear orders. We first provide some definitions and nota-
tional conventions we will use. Let C' C w be a cohesive set. Let (-,-) : w? — w
be a fixed computable bijection, and let the (computable) functions 71 and o
be such that 71 ({m,n)) = m and m((m,n)) = n.

Definition 4. Let Lo = (Lo, <g,) and L1 = (L1, <g,) be linear orders. Then
(1) Lo+ L = <{<O,l> 1l e Lo} @] {<1,l> e Ll}, <£0+£1> , where

(i,1) <cotrr, (Jym) if (I <j)V(i=jAl<g, m).

(2) Lox L= <L0 X L1,<50><£1> , Where
<k,m> <LoxLi (l,n} iff (k <z l) vV (k =ro LAM <, n)



Remark 5. (1) By N, Z, and Q we denote the usual ordered sets of natural
numbers, integers, and rational numbers. The order types of N, Z, and Q are
denoted by w, ¢, and 7.

(2) In Definition [ we use Ly x £1 to denote the lexicographical product
of the linear orders £y and £;. This product is also denoted by £y - Ly. (For
example, Q x Z is also denoted by Z - Q, and its order type is denoted ¢ - n.)

(3) We will use L7 to denote the reverse linear order of £. (In the literature
it is also denoted by L*.)

(4) Let the quantifier V°°n stand for “infinitely many n.” Note that if {n |
w(n)} is a c.e. set, then (V>°n € C) [p(n)] will mean that ¢(n) is satisfied ”for
almost all n € C.”

Before we state the next theorem, we would like to remind that N+ Q x Z
is the order type of a countable non-standard model of PA.

Theorem 6. Let Ly and L1 be computable linear orders and let C' be a cohesive
set. Then

(1) IIc (Lo + L1) = Ly + oLy

(Q) e (Lo X ﬁl) = [IcLo x oLy

(8) HoLy®™ = (IlcLo)™

(4) Let A be a computable presentation of the linear order N with a com-
putable successor function. Then g A =N+ Q x Z.

(5) If L is a computable dense linear order without endpoints, then L = ITc L.

Proof. (1) Let A = IIc (Lo + £1) and B = IIcLy + IIoL1. We will define an
isomorphism @ : A — B. Suppose [¢] € IIc (Lo + L1) for a partial computable
function ¢.

If (Vv*°n € C)[p(n) € {0} x L1], then let ([p]~) =des (0, [m2 0 ¢]) -

If (V*°n € C)[p(n) € {1} x L], then let &([¢],) =der (1, [m20¢]a) -

Since C' is cohesive, exactly one of the two cases above applies, so it follows
that so it follows that @ is well defined. It is then easy to check that @ is an
isomorphism.

(2) Let A = IIc (Lo X L1) and B = [IcLy x IIcL1. We will define an iso-
morphism @ : A — B. Suppose [p|, € IIc (Lo x L), and let D([p]~) =def
([m10¢]o,[m2 0 ¢ln) . We will prove that

[Pl <al¥le = (movle,mople) <s (m o]y, [modls).

By definition, [¢], <a [¢]q iff C C* {n : p(n) < ¥(n)}. By cohesiveness of C,
we will have either

(v>°n € C) [(m1 0 ¢) (n) < (m o ¢) (n)], or

(v**n € O)[(m 0 @) (n) = (m109) (n) A (ma 0 ) (n) < (72 09) (n)].
In the first case, [m1 0 @] <oz, [T1 0 ¥] . In the second case, [m1 0 @] =m.z,
[11 0] and [m2 0 @] <per, [T2 © Y] . Therefore,

([mio¢le,[mowle) <s ([modle,[raodle).



(3) Let A = IIcLL and B = (I1cLy)" " . We will define an isomorphism
&A= B If [p], € HoLy, then let @ ([¢]-) = [¢]o. We will prove that
[ole <a Y] iff ¢l <B [¥]o . By definition we have

[Ple <B [V]e € [V]e <nmoc, [Plo &
(Vn € C) (¥(n) <z, ¢(n))
(Vn € C) (p(n) <gper ¥(n)) & [plo <a Wlo -

(4) The proof of this fact is omitted because it is a simplified version of the
proof of Theorem 8]

(5) The theory of dense linear orders without endpoints is IT9 axiomatizable
and countably categorical. By Theorem [ (part 4), IIcL is also a dense linear
order without endpoints. Since II¢L is countable, we have Q = L = [IL.

Item (5) in the previous Theorem provides an example of an infinite structure
L such that £ = [Io L. The linear order Q is an ultrahomogeneous structure; it
is the Fraissé limit of the class of finite linear orders. The relationship between
Fraissé limits and cohesive powers is considered in ([5]). We now provide two
more examples of structures isomorphic to their cohesive powers.

Ezample 7. (1) Hc (Q X Z) 2 QX Z
2) Ic(N+QxZ)2N+QxZ

Proof. (1) HeQ x IIeZ = Q x IIo(N™Y+N) =2 Q x (HcNTev—i-HcN) =
YQOx[(N+QxZ)"+(N+QxZ)]2Qx[QxZ+N+N+QxZ| =
YOQX[QXxZ+Z+QxZ)=2Qx[QxZ=2QXZ
2) e (N+QXZ) X HeN+TIc (QXZ) 2N+ QxZ+QxZ =N+ QxZ

Theorem [6] part (4), demonstrates that having a computable successor func-
tion is a sufficient condition for the cohesive power of a computable linear order
of type w to be isomorphic to N + Q x Z. The next theorem shows that this
condition is not necessary.

Theorem 8. There is a computable linear order L of order type w with a non-
computable successor function such that for every cohesive set C we have oL =2
N+QxZ.

Proof. Fix a non-computable c.e. set A, and let f be a total computable injection
on the set of natural numbers with range A. Let £ = (w, <) be the linear order
obtained by ordering the even numbers according to their natural order, and by
setting 2a <, 2k + 1 < 2a + 2 if and only if f(k) = a. Specifically, we set

2¢ <, 2d — 2¢c < 2d

2c<c2k+1 “ c< f(k)
2k+ 1<, 2¢ “ f(k) <c
2k+1 <2041 > fk) < f(0).



Then £ is a computable linear order of type w. Let S* denote the successor
function of £. Then A <t S* (indeed, A =1 S*) because a € A if and only if
S%(2a) # 2a + 2. Thus S* is not computable.

Let C be cohesive, and let P = IIcL. We show that P 2 N+ Q x Z. To do
this, we begin by establishing the following properties of P.

(a) P has an initial segment of type w.

(b) Every element of P has a <p-immediate successor.

(¢) Every element of P that is not the least element has an <p-immediate
predecessor.

For (@), note that the range of the canonical embedding of £ into P is an
initial segment of P of type w.

For (b)), consider a [1)] € P. We define a partial computable ¢ such that, for
almost every n € C, ¢(n) is the <,-immediate successor of 1(n). It then follows
that [¢] is the <p-immediate successor of [¢]. To define ¢, observe that, by the
cohesiveness of C, exactly one of the following three cases occurs.

1. (v°n € C)(¢¥(n) is odd)
2. (V*°n e C)(Fa € A)(Y(n) =2a)
3. (V*°n e C)(Fa ¢ A)(Y(n) = 2a)
Note that we cannot effectively decide which case occurs, but in each case we

can define a particular ¢; such that [p;] is the <p-immediate successor of [¢].
If case () occurs, define

o1(n) = {2a +2 3 ) v(n) = 26+ 1, and £(k) = a;
T otherwise.

If case (@) occurs, define

po(n) = {% +1 if¢(n)), ¥(n) =2a, a € A, and f(k) = a;

T otherwise.

If case (@) occurs, define

03(n) = {2(1 +2 if ¢(n)l and ¥(n) = 2a;

1T otherwise.

In each case (i) (i = 1,2,3) we have that for almost every n € C, ¢;(n) is the
< c-immediate successor of (n).

The proof of (@) is analogous to the proof of (bl).

For [¢], [¢] € P, write [¢] <p [¢] if [¢)] <p [¢] and the interval ([¢/], [¢])p in
P is infinite. Using the cohesiveness of C, we check that [¢)] <p [¢] if and only
if ] <p [¢] and limsup, . [(¥(n), p(n))c| = oo, where |(a,b)s| denotes the
cardinality of the interval (a,b), in £. Notice that for even numbers 2a and 2b,
2a <, 2bif and only if 2a < 2b. Therefore, if 2a < 2b, then |(2a,2b)c| > b—a—1.
To finish the proof, we show the following.



(d) If [¢], [¢] € P satisfy [)] <p [¢], then there is a [f] € P such that [¢] <p

[0] <P [¢].
(e) If [¢] € P, then there is a [¢] € P with [¢)] <p [¢].

For (d)), suppose that [/], [¢] € P satisfy [¢)] <p [¢]. By (again) considering
the cases (I)—(@) above, either ¥ (n) is odd for almost every n € C, or ¥(n) is
even for almost every n € C. In the case where 1(n) is odd for almost every
n € C, &(n) is even for almost every n € C, where [15] is the <p-immediate
successor of [1]. Thus we may assume that ¢(n) and ¢(n) are even for al-
most every n € C by replacing [¢)] and [¢] by their <p-immediate successors
if necessary. The condition limsup,,cc [(¥(n), ¢(n)) | = oo is now equivalent to

limsup,,co(¢(n) — (n)) = occ.
Define a partial computable 6 by

V(n);rsa(n)J V(" o) | g even;
O(n) =

J
LMJ L1 if V(n +e(n) J is od
) —

By the definition of #, we have that limsup,,co(6(n) — ¥ (n)) = oo and that
limsup,,c(p(n) — 6(n)) = oo. Since ¥ (n), ¢(n), and O(n) are even for almost
all n € C, we have that:

limsup |(¢(n),0(n))c| = oo and limsup |(8(n), ¢(n))z| = oc.
neC neC

Thus, [¢] <p [0] <p [¢], as desired.

For (@), consider [¢)] € P. As argued above, we may assume that i(n) is
even for almost every n € C by replacing [¢)] by its <p-immediate successor,
if necessary. If limsup, % (n) is finite, then by the cohesiveness of C, the
function ¢ must be eventually constant on C. In this case, [¢)] <p [2id]. If

lim sup,,c 9 (n) = oo, then [¢)] <p [2¢)].

This completes the proof since the properties (@)—(@) ensure that P =2 N 4
Qx .

3 Non-Isomorphic Cohesive Powers of Isomorphic
Structures

Theorem 9. For every co-mazimal set C' C w there exist two isomorphic com-
putable structures A and B such the cohesive powers [[» A and [[, B are not
isomorphic.

Proof. Note that it suffices to prove the theorem for an arbitrary co-maximal
set consisting of even numbers only. Indeed, if C' is an arbitrary co-maximal
set, then Cy = {2s | s € C} is also a co-maximal set, and for any computable



structure M, we have [[, M = Hcl M. Then, if My and M are isomorphic
computable structures such that [[, Mo 2 [[, M1, then [[o Mo 2Z [[o M.

Let S = {2s | s € w}. Let A C S be such that A; = S — A is infinite and
c.e. For every such A we will define a computable structure M 4 with a single
ternary relation.

Let F = {4s+ 1| s € w} and B = {4s+ 3 | s € w}. Fix a computable
bijection f from the set {(i,j) € S| ¢ < j} onto F. Let also b be a computable
bijection from the set {(j,i) € S |i < jA (i € A1 Vj € A1)} onto B. For the
function f, we write f;; instead of f(i,7) and similarly for the function b. Define
a ternary relation P as follows:

P:{($afmy7y)|$,y65/\x<y}u
{(y,byz,z) |,y e SNz <yA(zeAiVye€ A}

Finally, let M4 = (w; P). Informally, we can view the triples x,w,y with the
property P(z,w,y) as labelled arrows (e.g., © - y). We start with a structure

consisting of the set S U F with arrows i ﬂ> j, that connect ¢ with j for all
i,j € S such that ¢ < j. These arrows can be viewed as a way of redefining the
natural ordering < on S. Elements of S can be thought of as “stem elements”
and elements of F' can be thought of as “forward witnesses.” Next, we start enu-
merating the c.e. set A3 =5 — A. At every stage a new element k is enumerated
into A1, we add new arrows together with appropriate elements from B, the
“backward witnesses,” which intend to exclude k from the initial ordering on S.

) b,
More precisely, we add arrows k Dkl i for all i with i < k, and arrows j 5k,
for each j with j > k. Eventually, exactly the elements of A; will be excluded
from the ordering, and the final ordering will be an ordering on the set A.

In the resulting structure, every element x € A; is connected with every
element y € S such that z # y with exactly two arrows: z — y and y —> .
If z,y € A are such that x # y then they are connected with arrows of the type

w
x — y exactly when z < y. In other words, the formula

@(I, y) —def EwP(I, w, y) A _E|U]1P(y, wy, I)

will be satisfied by exactly those x,y € A such that x < y. The formula ¢ will
not be satisfied by any pair (z,y) for which at least one of x or y has been
excluded.

The following properties of the structure M4 follow immediately from the
definition above.

(1) For every w there is at most one pair x,y such that P(x,w,y).

(2) If z € S — A, then for any y € S, y # z, there is a unique w; such that
P(z,w;,y) and a unique wo such that P(y,ws, ).

(3) If z,y € A, then z < y & JwP(z,w,y).

(4) M4 is computable.

To prove (4) note that the relation P is computable because

P(z,z,y) & x,y € SA [(:c<y/\z:fxy)\/(:c>y/\z€B/\b*1(z): (z, )] -



(5) Let D, E C S be infinite and such that S — D and S — E are infinite and
c.e. Then Mp = Mg.

Since D and E are infinite, the orders (D, <) and (E, <), where < is the
natural order, are isomorphic to N. The isomorphism between these orders, ex-
tended by any bijection between S — D and S— F, has a unique natural extension
to a map from the domain of Mp to the domain of Mg. That is, the arrows
in Mp (the elements of F' and B) can be uniquely mapped to corresponding
arrows in Mg.

To continue with the proof, we let
O(x) =dey (3t) [P(x,t) Vv D(t, z)] .

The formula ©(z) defines the set A in M 4.

For any structure M= (M, P) in the language with one ternary predicate
symbol we will use the following notation:

Lag =def {{E S M|M E @(I)} ,and

<Lm=def {(l‘,y) € M x MlM F @(x,y)}

Fix A C S such that S — A is infinite and c.e.

It follows from the discussion above that the formula @(x,y) defines in M4
the restriction of the natural order < to A. Clearly, (LMA, <LMA> has order
type w.

Let M¥ = [[o Ma. For partial computable functions g and h such that
[g],[h] € dom(M?,) we have:

(i) My (9], 1)) & C S {3l (9(i) € A) A (h(i) € A) A (9(i) < h(i))}

(i) LM“A ={lg] € Mm g(C) C* A} and (LM”A’ <LM”A) is a linear order.

Note that (i) follows from Theorem Bl part (2), since @(z,y) is a Boolean

combination of X and IT{ formulas.

For the proof of (ii) notice that for any [¢g] € ./\/l% we have either C C*
{ilg(i) € A} or C C* {i|g(i) € w — A} because C is cohesive and w — A is c.e.
Since

9] € Ly, = (Bx) [2((g], ) v (2, [9])],

the equivalence in part (i) implies that Ly, = {lg] € M%| g(C) C* A}. Tt is

easy to show that the relation <L, is a linear order on L, s .
A

#
A
For any a € A let hy(i) = a for all i € w. We will call the element [h,] in
Mg a constant in M%.
(6) The set of constants {[h,]|a € A} in the structure M‘Z forms an initial

segment of LM&, <L, of order type w.

t
A

Clearly, if ag,a1 € A, then ®([ha,], [ha,]) if and only if ag < ai. Therefore,
{[ha] |a € A} is an ordered set of type w. It remains to check that {[h,]|a € A}

is an initial segment. Suppose [h] € Mﬁ‘ and a € A are such that ./\/lﬁ‘ E



@([h], [ha]). Then

C C* {ilMy ED(h(i),a)} = {ilh(i) € ANR(i) < a} = U {i|h(7) = k}.

keEANk<a

The last expression is a union of a finite family of mutually disjoint c.e. sets.
Since C' is cohesive, there exists a k € A such that C C* {i|h(i) = k}, which
means that [h] = [hg] is a constant.

We now define the following X sentence

¥ =gey (Fz) [O() A (Vy) [O(y) = P(y, 2)]].-

The intended interpretation of ¥ is that when @(x,t) defines a linear order
(Lam,<rL,,), then the order has a greatest element. Note that M 4 E"W. This is
because | La,, <r MA) has order type w and hence has no greatest element.

Before we continue with the proof we recall Proposition 2.1 from [§].

Proposition 10. (Lerman [8]) Let R be a co-r-mazimal set, and let f be a
computable function such that f(R) N R is infinite. Then the restriction f | R
differs from the identity function only finitely.

We now fix a co-maximal (hence co-r-maximal) set C' C S and an infinite
co-infinite computable set D C S. By property (5) above, we have M¢c = Mp.
Let M}, =[], Mc and M4, =[] Mp.

It is not hard to show that, since C' is co-maximal, for every partial com-
putable function ¢ for which C' C* dom(yp), there is a computable function f,
such that [p] = [f,] (see [E]).

To finish the proof we will establish the following facts:

(1) ML EW

(8) M, Ew

To prove (7) recall that Ly = {If] € M| f(C) C* C}. By Proposition
I if [f] € Mﬁc is such that f(C) C* C and f(C) is infinite, then [f] = [id].
If f(C) is finite, then f is eventually a constant on C, because C' is cohesive.
Therefore, LM"C = {[fe] | ¢ € C}U{[id]}. It is easy to see that if ¢ € C,

then ®([f.],[id]). Thus, (LM”C’ <L, ) has order type w + 1 with the greatest
C

element [id]. Therefore, ./\/luc Ev.
To prove (8), let D = {dy < dy < ---}. The function g defined as g(d;) =
di+1 is computable. Suppose that MﬁD E ¥ and let [f] be the greatest element

in (LM%, <LM§3) . Since [f] <LMﬁD [g o f], it follows that M%, E™W.

In conclusion, we defined computable isomorphic structures M and Mp
such that [[, M¢ and [[, Mp are not even elementary equivalent. The struc-
ture M¢ also provides a sharp bound for the fundamental theorem of cohesive
powers. Namely, for the X sentence ¥, M¢ E™W but [, Mc F W.



4 Orders of type w with cohesive powers not isomorphic
toN+Q X Z

We prove that if C is co-maximal, then there is a computable linear order £ of
type w (necessarily with a non-computable successor function) such that ITc £ 2
N+ Q x Z.

Lemma 11. Let C' C w be co-c.e., infinite, and co-infinite. Then there is a com-
putable linear order L = (w, <) of type w such that for every partial computable
function o,

Von € C(p(n)l = p(n) is not the L-immediate successor of n). *)

Proof. Fix an infinite computable set R C C. We define <. in stages. By the end
of stage s, <, will have been defined on X x X for some finite X5 2 {0,1,..., s}.
At stage 0, set Xg = {0} and define 0 £ 0. At stage s > 0, start with X; = X1
and update X; and <, according to the following procedure.

1. If <, has not yet been defined on s (i.e., if s ¢ X;), then update X to
Xs U {s} and extend <, to make s the < -greatest element of Xj.
2. Consider each (e,n) < s in order. If
(a) pe,s(n)l € X,
(b) @e(n) is currently the <,-immediate successor of n in Xj,
(¢) n ¢ R, and
(d) n is not <g-below any of 0,1,..., e,
then let m be the least element of R — X;. Update X to X; U {m}, and
extend <, so that n <; m <z @e(n).

This completes the construction.

We claim that for every k, there are only finitely many elements <,-below
k. It follows that L is of type w. Say that . acts for n and adds m when <,
is defined on an m € R to make n < m <z ¢.(n) as in [@)). Let so be a stage
with k € X,,. Suppose at stage s > so we add an m to X and define m <. k.
This can only be due to a ¢, acting for an n ¢ R and adding m at stage s. At
stage s, we must have n <, k because n <; m <, k. Therefore, we must also
have e < k, for otherwise k would be among 0,1, ... e, and condition 2d)) would
prevent the action of .. Furthermore, m is chosen so that m € R and thus
only elements of R are added <.-below k after stage so. Hence an m can only
be added <,-below k after stage sp when a ¢, with e < k acts for an n <, k
with n ¢ R. Each @, acts at most once for every n, and no new n ¢ R appears
<c-below k after stage so. Thus, after stage sg, only finitely many m are ever
added <-below k.

We claim that for every e, (%) holds. Given e, let £ be the < .-greatest element
of {0,1,...,e}. Suppose that n >, £ and n € C. If p.(n)l, let s be large enough
so that (e,n) < s, ve s(n)}, n € X, and g.(n) € X;. Then either ¢ (n) is already
not the £-immediate successor of n at stage s+ 1, or at stage s+ 1 the conditions
of [@) are satisfied for (e,n), and an m is added such that n <z m <z @.(n).



Theorem 12. Let C be a co-mazximal set. Then there is a computable linear
order L of type w such that [id] does not have a successor in IIcL. Therefore,
HcLZEZN+Q X Z.

Proof. Let L be a computable linear order as in Lemma [Tl for C. Suppose that
¢ is a partial computable function such that [id] <.z [¢]. We show that [¢] is
not the <y, c-immediate successor of [id]. The inequality [id] <p.r [¢] means
that (V>°n € C) (n <¢ ¢(n)). However, by Lemma [IT]

(V*°n € C) (¢(n) is not the L-immediate successor of n).

Define a partial computable ¥ so that, for every n,

(n) {the least m such that n <gm <z p(n) if there is such an m;
n)=

0 otherwise.

Then (V°n € C) (n <z ¥(n) <c ¢(n)). Thus, [id] <mg.rz [¢¥] <mec [¢]- So, [¢]
is not the <7, c-immediate successor of [id].

It follows that IIcL 2 N 4+ Q x Z because every element of N+ Q x Z has
an immediate successor, but [id] € IIc £ does not have an immediate successor.

Note that the sentence ¥ that states that every element has an immediate
successor is IT9. Then for the computable linear order £ of type w constructed
above, LF W but [IcL FW.

References

1. Dimitrov, R.D.: A class of X9 modular lattices embeddable as principal filters in
L*(Ves), Arch. Math. Logic 47, pp. 111-132 (2008).

2. Dimitrov, R.D.: Cohesive powers of computable structures, Annuaire De
L’Universite De Sofia 7St. Kliment Ohridski”, Fac. Math. and Inf., tome 99, pp.
193-201 (2009).

3. Dimitrov, R.D. and Harizanov, V.: Orbits of maximal vector spaces, Algebra and
Logic 54 (2015), pp. 680-732 (Russian); (2016) pp. 440-477 (English translation).

4. Dimitrov, R., Harizanov, V., Miller, R., and Mourad, K.J.: Isomorphisms on non-
standard fields and Ash’s conjecture. Language, life, limits, Lecture Notes in Com-
put. Sci., 8493, pp. 143-152, Springer, Cham, (2014).

5. Dimitrov, R., Harizanov, V., Morozov, A., Shafer, P., Soskova, A., and Vatev, S.:
Cohesive powers, linear orders and Fraissé limits, unpublished manuscript.

6. Feferman, S., Scott, D.S., and Tennenbaum, S.: Models of arithmetic through func-
tion rings, Notices Amer. Math. Soc. 6, 173. Abstract #556-31 (1959).

7. Hirschfeld, J. and Wheeler, W.: Forcing, arithmetic, division rings, Lecture Notes
in Mathematics, vol. 454, Springer, Berlin (1975).

8. Lerman, M.: Recursive functions modulo co-r-maximal sets, Transactions of the
American Mathematical Society, vol. 148, pp. 429-444 (1970).

9. McLaughlin, T.: Sub-arithmetical ultrapowers: a survey, Annals of Pure and Ap-
plied Logic, vol. 49, pp. 143-191 (1990).

10. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer-Verlag, Berlin
(1987).



	Cohesive Powers of Linear Orders

