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⋆

Abstract. Cohesive powers of computable structures can be viewed as
effective ultraproducts over effectively indecomposable sets called cohe-
sive sets. We investigate the isomorphism types of cohesive powers ΠCL

for familiar computable linear orders L. If L is isomorphic to the ordered
set of natural numbers N and has a computable successor function, then
ΠCL is isomorphic to N+Q×Z. Here, + stands for the sum and × for the
lexicographical product of two orders. We construct computable linear
orders L1 and L2 isomorphic to N, both with noncomputable successor
functions, such that ΠCL1 is isomorphic to N + Q × Z, while ΠCL2 is
not. While cohesive powers preserve all Π0

2 and Σ0

2 sentences, we provide
new examples of Π0

3 sentences Φ and computable structures M such that
M � Φ while ΠCM �qΦ.

1 Introduction and Preliminaries

Skolem was the first to construct a countable nonstandard model of true arith-
metic. Various countable nonstandard models of (fragments of) arithmetic have
been later studied by Feferman, Scott, Tennenbaum, Hirschfeld, Wheeler, Ler-
man, McLaughlin and others (see [6], [8], [7], [9]). The following definition, and
other notions from computability theory can be found in [10].
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Definition 1. (i) An infinite set C ⊆ ω is cohesive ( r-cohesive) if for every
c.e. (computable) set W, either W ∩ C or W ∩ C is finite.

(ii) A set M is maximal ( r-maximal) if M is c.e. and M is cohesive ( r-
cohesive).

(iii) If M is maximal, then M is called co-maximal.
(iv) A set B is quasimaximal if it is the intersection of finitely many maximal

sets.

In the definition above ω denotes the set of natural numbers. We will use
=∗(and ⊆∗) to refer to equality (inclusion) of sets up to finitely many elements.
Let A be a fixed r -cohesive set. For computable functions f and g, Feferman,
Scott, and Tennenbaum (see [6]) defined an equivalence relation f ∼A g if A ⊆∗

{n : f(n) = g(n)}. They then proved that the structure R/∼A, with domain the
set of recursive functions modulo ∼A, is a model of only a fragment of arithmetic.
They constructed a particular Π0

3 sentence Φ such that for the standard model
of arithmetic, N , we have N � Φ but R/∼A2 Φ. The sentence Φ provided in [6]
essentially uses Kleene’s T predicate.

Cohesive powers of computable structures are effective versions of ultrapow-
ers. They have been introduced in [2] in relation to the study of automorphisms
of the lattice L∗(V∞) of effective vector spaces. Cohesive powers of the field
of rational numbers were used in [1] to characterize certain principal filters of
L∗(V∞). Their isomorphism types and automorphisms were further studied in
[4]. They were also used in [1] and [3] to find interesting orbits in L∗(V∞).

The goal of this paper is to show that the presentation of a computable
structure matters for the isomorphism type of its cohesive power. We give com-
putable presentations of the ordered set of natural numbers such that their co-
hesive powers are not elementary equivalent. Furthermore, we provide examples
of computable structures M and Π0

3 sentences Ψ, which do not use Kleene’s T
predicate, such that M � Ψ while the cohesive power ΠCM �qΨ. We will now
present some additional definitions and known results.

Definition 2. [2] Let A be a computable structure for a computable language L
and with domain A. Let C ⊆ ω be a cohesive set. The cohesive power of A over
C, denoted by ΠCA, is a structure B for L defined as follows:

(i) Let D = {ϕ | ϕ : ω → A is a partial computable function, and C ⊆∗

dom(ϕ)}.
For ϕ1, ϕ2 ∈ D, define ϕ1 =C ϕ2

iff C ⊆∗ {x : ϕ1(x)↓ = ϕ2(x)↓}.
Let B = (D/ =C) be the domain of B =ΠCA
(ii) If f ∈ L is an n-ary function symbol, then fB is an n-ary function on B

such that for every [ϕ1], . . . , [ϕn] ∈ B, fB([ϕ1], . . . , [ϕn]) = [ϕ], where for every
x ∈ A,

ϕ(x) ≃ fA(ϕ1(x), . . . , ϕn(x)),

where ≃ stands for equality of partial functions.
(iii) If P ∈ L is an m-ary predicate symbol, then PB is an m-ary relation on

B such that for every [ϕ1], . . . , [ϕm] ∈ B,

PB([ϕ1], . . . , [ϕm]) ⇔ C ⊆∗ {x ∈ A | PA(ϕ1(x), . . . , ϕm(x))}.



(iv) If c ∈ L is a constant symbol, then cB is the equivalence class of the (total)

computable function on A with constant value cA.

The following is the fundamental theorem of cohesive powers due to Dimitrov
(see [2]).

Theorem 3. Let C be a cohesive set and let A and B be as in the definition
above.

1. If τ(y1, . . . , yn) is a term in L and [ϕ1], . . . , [ϕn] ∈ B, then [τB([ϕ1], . . . , [ϕn])]
is the equivalence class of a partial computable function such that

τB([ϕ1], . . . , [ϕn])(x) = τA(ϕ1(x), . . . , ϕn(x)).

2. If Φ(y1, . . . , yn) is a formula in L that is a Boolean combination of Σ0
1 and

Π0
1 formulas and [ϕ1], . . . , [ϕn] ∈ B, then

B � Φ([ϕ1], . . . , [ϕn]) iff C ⊆∗ {x : A |= Φ(ϕ1(x), . . . , ϕn(x))}.

3. If Φ is a Π0
2 (or Σ0

2) sentence in L, then B � Φ iff A � Φ.

4. If Φ is a Π0
3 sentence in L, then B � Φ implies A � Φ.

Note that A is a substructure of B =ΠCA. For c ∈ A let [ϕc] ∈ B be the
equivalence class of the total function ϕc such that ϕc(x) = c for every x ∈ ω.
The map d : A → B such that d(c) = [ϕc] is called canonical embedding of A
into B.

2 Cohesive Powers of Linear Orders

We will now investigate various algebraic and computability-theoretic properties
of cohesive powers of linear orders. We first provide some definitions and nota-
tional conventions we will use. Let C ⊆ ω be a cohesive set. Let 〈·, ·〉 : ω2 → ω
be a fixed computable bijection, and let the (computable) functions π1 and π2
be such that π1(〈m,n〉) = m and π2(〈m,n〉) = n.

Definition 4. Let L0 = 〈L0, <L0
〉 and L1 = 〈L1, <L1

〉 be linear orders. Then

(1) L0 + L1 = 〈{〈0, l〉 : l ∈ L0} ∪ {〈1, l〉 : l ∈ L1}, <L0+L1
〉 , where

〈i, l〉 <L0+L1
〈j,m〉 iff (i < j) ∨ (i = j ∧ l <Li

m) .

(2) L0 × L1 = 〈L0 × L1, <L0×L1
〉 , where

〈k,m〉 <L0×L1
〈l, n〉 iff (k <L0

l) ∨ (k =L0
l ∧m <L1

n) .



Remark 5. (1) By N, Z, and Q we denote the usual ordered sets of natural
numbers, integers, and rational numbers. The order types of N, Z, and Q are
denoted by ω, ζ, and η.

(2) In Definition 4 we use L0 × L1 to denote the lexicographical product
of the linear orders L0 and L1. This product is also denoted by L1 · L0. (For
example, Q× Z is also denoted by Z ·Q, and its order type is denoted ζ · η.)

(3) We will use Lrev to denote the reverse linear order of L. (In the literature
it is also denoted by L∗.)

(4) Let the quantifier ∀∞n stand for “infinitely many n.” Note that if {n |
ϕ(n)} is a c.e. set, then (∀∞n ∈ C) [ϕ(n)] will mean that ϕ(n) is satisfied ”for
almost all n ∈ C.”

Before we state the next theorem, we would like to remind that N + Q × Z

is the order type of a countable non-standard model of PA.

Theorem 6. Let L0 and L1 be computable linear orders and let C be a cohesive
set. Then

(1) ΠC (L0 + L1) ∼= ΠCL0 +ΠCL1

(2) ΠC (L0 × L1) ∼= ΠCL0 ×ΠCL1

(3) ΠCL
rev
0

∼= (ΠCL0)
rev

(4) Let A be a computable presentation of the linear order N with a com-
putable successor function. Then ΠCA ∼= N+Q× Z.

(5) If L is a computable dense linear order without endpoints, then L ∼= ΠCL.

Proof. (1) Let A = ΠC (L0 + L1) and B = ΠCL0 + ΠCL1. We will define an
isomorphism Φ : A → B. Suppose [ϕ]C ∈ ΠC (L0 + L1) for a partial computable
function ϕ.

If (∀∞n ∈ C) [ϕ(n) ∈ {0} × L1], then let Φ([ϕ]C) =def 〈0, [π2 ◦ ϕ]C〉 .

If (∀∞n ∈ C) [ϕ(n) ∈ {1} × L2] , then let Φ([ϕ]C) =def 〈1, [π2 ◦ ϕ]C〉 .

Since C is cohesive, exactly one of the two cases above applies, so it follows
that so it follows that Φ is well defined. It is then easy to check that Φ is an
isomorphism.

(2) Let A = ΠC (L0 × L1) and B = ΠCL0 × ΠCL1. We will define an iso-
morphism Φ : A → B. Suppose [ϕ]C ∈ ΠC (L0 × L1) , and let Φ([ϕ]C) =def
〈[π1 ◦ ϕ]C , [π2 ◦ ϕ]C〉 . We will prove that

[ϕ]C <A [ψ]C ⇔ 〈[π1 ◦ ϕ]C , [π2 ◦ ϕ]C〉 <B 〈[π1 ◦ ψ]C , [π2 ◦ ψ]C〉 .

By definition, [ϕ]C <A [ψ]C iff C ⊆∗ {n : ϕ(n) < ψ(n)}. By cohesiveness of C,
we will have either

(∀∞n ∈ C) [(π1 ◦ ϕ) (n) < (π1 ◦ ψ) (n)], or
(∀∞n ∈ C) [(π1 ◦ ϕ) (n) = (π1 ◦ ψ) (n) ∧ (π2 ◦ ϕ) (n) < (π2 ◦ ψ) (n)] .

In the first case, [π1 ◦ ϕ]C <ΠCL0
[π1 ◦ ψ]C . In the second case, [π1 ◦ ϕ]C =ΠCL0

[π1 ◦ ψ]C and [π2 ◦ ϕ]C <ΠCL1
[π2 ◦ ψ]C . Therefore,

〈[π1 ◦ ϕ]C , [π2 ◦ ϕ]C〉 <B 〈[π1 ◦ ψ]C , [π2 ◦ ψ]C〉 .



(3) Let A = ΠCLrev0 and B = (ΠCL0)
rev . We will define an isomorphism

Φ : A → B. If [ϕ]C ∈ ΠCLrev0 , then let Φ ([ϕ]C) = [ϕ]C . We will prove that
[ϕ]C <A [ψ]C iff [ϕ]C <B [ψ]C . By definition we have

[ϕ]C <B [ψ]C ⇔ [ψ]C <ΠCL0
[ϕ]C ⇔

(∀∞n ∈ C) (ψ(n) <L0
ϕ(n)) ⇔

(∀∞n ∈ C) (ϕ(n) <Lrev
0

ψ(n)) ⇔ [ϕ]C <A [ψ]C .

(4) The proof of this fact is omitted because it is a simplified version of the
proof of Theorem 8.

(5) The theory of dense linear orders without endpoints is Π0
2 axiomatizable

and countably categorical. By Theorem 3 (part 4), ΠCL is also a dense linear
order without endpoints. Since ΠCL is countable, we have Q ∼= L ∼= ΠCL.

Item (5) in the previous Theorem provides an example of an infinite structure
L such that L ∼= ΠCL. The linear order Q is an ultrahomogeneous structure; it
is the Fräıssé limit of the class of finite linear orders. The relationship between
Fräıssé limits and cohesive powers is considered in ([5]). We now provide two
more examples of structures isomorphic to their cohesive powers.

Example 7. (1) ΠC (Q× Z) ∼= Q× Z

(2) ΠC (N+Q× Z) ∼= N+Q× Z

Proof. (1) ΠCQ×ΠCZ ∼= Q×ΠC(N
rev+N) ∼= Q× (ΠCN

rev +ΠCN) ∼=
∼= Q× [(N+Q× Z)

rev
+ (N+Q× Z)] ∼= Q× [Q×Z+ Nrev +N+Q×Z] ∼=

∼= Q× [Q× Z+ Z+Q× Z] ∼= Q× [Q× Z] ∼= Q× Z

(2) ΠC (N+Q× Z) ∼= ΠCN+ΠC (Q× Z) ∼= N+ Q×Z+Q×Z ∼= N+Q×Z

Theorem 6, part (4), demonstrates that having a computable successor func-
tion is a sufficient condition for the cohesive power of a computable linear order
of type ω to be isomorphic to N + Q × Z. The next theorem shows that this
condition is not necessary.

Theorem 8. There is a computable linear order L of order type ω with a non-
computable successor function such that for every cohesive set C we have ΠCL ∼=
N+Q× Z.

Proof. Fix a non-computable c.e. set A, and let f be a total computable injection
on the set of natural numbers with range A. Let L = (ω,<L) be the linear order
obtained by ordering the even numbers according to their natural order, and by
setting 2a <L 2k + 1 <L 2a+ 2 if and only if f(k) = a. Specifically, we set

2c <L 2d ↔ 2c < 2d

2c <L 2k + 1 ↔ c ≤ f(k)

2k + 1 <L 2c ↔ f(k) < c

2k + 1 <L 2ℓ+ 1 ↔ f(k) < f(ℓ).



Then L is a computable linear order of type ω. Let SL denote the successor
function of L. Then A ≤T SL (indeed, A ≡T SL) because a ∈ A if and only if
SL(2a) 6= 2a+ 2. Thus SL is not computable.

Let C be cohesive, and let P = ΠCL. We show that P ∼= N+ Q × Z. To do
this, we begin by establishing the following properties of P .

(a) P has an initial segment of type ω.
(b) Every element of P has a <P -immediate successor.
(c) Every element of P that is not the least element has an <P -immediate

predecessor.

For (a), note that the range of the canonical embedding of L into P is an
initial segment of P of type ω.

For (b), consider a [ψ] ∈ P . We define a partial computable ϕ such that, for
almost every n ∈ C, ϕ(n) is the <L-immediate successor of ψ(n). It then follows
that [ϕ] is the <P -immediate successor of [ψ]. To define ϕ, observe that, by the
cohesiveness of C, exactly one of the following three cases occurs.

1. (∀∞n ∈ C)(ψ(n) is odd)
2. (∀∞n ∈ C)(∃a ∈ A)(ψ(n) = 2a)
3. (∀∞n ∈ C)(∃a /∈ A)(ψ(n) = 2a)

Note that we cannot effectively decide which case occurs, but in each case we
can define a particular ϕi such that [ϕi] is the <P-immediate successor of [ψ].

If case (1) occurs, define

ϕ1(n) =

{
2a+ 2 if ψ(n)↓, ψ(n) = 2k + 1, and f(k) = a;

↑ otherwise.

If case (2) occurs, define

ϕ2(n) =

{
2k + 1 if ψ(n)↓, ψ(n) = 2a, a ∈ A, and f(k) = a;

↑ otherwise.

If case (3) occurs, define

ϕ3(n) =

{
2a+ 2 if ψ(n)↓ and ψ(n) = 2a;

↑ otherwise.

In each case (i) (i = 1, 2, 3) we have that for almost every n ∈ C, ϕi(n) is the
<L-immediate successor of ψ(n).

The proof of (c) is analogous to the proof of (b).

For [ψ], [ϕ] ∈ P , write [ψ] ≪P [ϕ] if [ψ] <P [ϕ] and the interval ([ψ], [ϕ])P in
P is infinite. Using the cohesiveness of C, we check that [ψ] ≪P [ϕ] if and only
if [ψ] <P [ϕ] and lim supn∈C |(ψ(n), ϕ(n))L| = ∞, where |(a, b)L| denotes the
cardinality of the interval (a, b)L in L. Notice that for even numbers 2a and 2b,
2a <L 2b if and only if 2a < 2b. Therefore, if 2a < 2b, then |(2a, 2b)L| ≥ b−a−1.

To finish the proof, we show the following.



(d) If [ψ], [ϕ] ∈ P satisfy [ψ] ≪P [ϕ], then there is a [θ] ∈ P such that [ψ] ≪P

[θ] ≪P [ϕ].
(e) If [ψ] ∈ P , then there is a [ϕ] ∈ P with [ψ] ≪P [ϕ].

For (d), suppose that [ψ], [ϕ] ∈ P satisfy [ψ] ≪P [ϕ]. By (again) considering
the cases (1)–(3) above, either ψ(n) is odd for almost every n ∈ C, or ψ(n) is
even for almost every n ∈ C. In the case where ψ(n) is odd for almost every

n ∈ C, ψ̂(n) is even for almost every n ∈ C, where [ψ̂] is the <P -immediate
successor of [ψ]. Thus we may assume that ψ(n) and ϕ(n) are even for al-
most every n ∈ C by replacing [ψ] and [ϕ] by their <P -immediate successors
if necessary. The condition lim supn∈C |(ψ(n), ϕ(n))L| = ∞ is now equivalent to
lim supn∈C(ϕ(n)− ψ(n)) = ∞.

Define a partial computable θ by

θ(n) =





⌊
ψ(n)+ϕ(n)

2

⌋
if
⌊
ψ(n)+ϕ(n)

2

⌋
is even;

⌊
ψ(n)+ϕ(n)

2

⌋
+ 1 if

⌊
ψ(n)+ϕ(n)

2

⌋
is odd.

By the definition of θ, we have that lim supn∈C(θ(n) − ψ(n)) = ∞ and that
lim supn∈C(ϕ(n) − θ(n)) = ∞. Since ψ(n), ϕ(n), and θ(n) are even for almost
all n ∈ C, we have that:

lim sup
n∈C

|(ψ(n), θ(n))L| = ∞ and lim sup
n∈C

|(θ(n), ϕ(n))L| = ∞.

Thus, [ψ] ≪P [θ] ≪P [ϕ], as desired.

For (e), consider [ψ] ∈ P . As argued above, we may assume that ψ(n) is
even for almost every n ∈ C by replacing [ψ] by its <P -immediate successor,
if necessary. If lim supn∈C ψ(n) is finite, then by the cohesiveness of C, the
function ψ must be eventually constant on C. In this case, [ψ] ≪P [2id]. If
lim supn∈C ψ(n) = ∞, then [ψ] ≪P [2ψ].

This completes the proof since the properties (a)–(e) ensure that P ∼= N +
Q× Z.

3 Non-Isomorphic Cohesive Powers of Isomorphic

Structures

Theorem 9. For every co-maximal set C ⊆ ω there exist two isomorphic com-
putable structures A and B such the cohesive powers

∏
C A and

∏
C B are not

isomorphic.

Proof. Note that it suffices to prove the theorem for an arbitrary co-maximal
set consisting of even numbers only. Indeed, if C is an arbitrary co-maximal
set, then C1 = {2s | s ∈ C} is also a co-maximal set, and for any computable



structure M, we have
∏
C M ∼=

∏
C1

M. Then, if M0 and M1 are isomorphic
computable structures such that

∏
C1

M0 ≇
∏
C1

M1, then
∏
C M0 ≇

∏
C M1.

Let S = {2s | s ∈ ω}. Let A ⊆ S be such that A1 = S − A is infinite and
c.e. For every such A we will define a computable structure MA with a single
ternary relation.

Let F = {4s + 1 | s ∈ ω} and B = {4s + 3 | s ∈ ω}. Fix a computable
bijection f from the set {〈i, j〉 ∈ S | i < j} onto F . Let also b be a computable
bijection from the set {〈j, i〉 ∈ S | i < j ∧ (i ∈ A1 ∨ j ∈ A1)} onto B. For the
function f , we write fij instead of f(i, j) and similarly for the function b. Define
a ternary relation P as follows:

P = {(x, fxy, y) | x, y ∈ S ∧ x < y} ∪

{(y, byx, x) | x, y ∈ S ∧ x < y ∧ (x ∈ A1 ∨ y ∈ A1)}.

Finally, let MA = 〈ω;P 〉. Informally, we can view the triples x,w, y with the

property P (x,w, y) as labelled arrows (e.g., x
w

−→ y). We start with a structure

consisting of the set S ∪ F with arrows i
fij
−→ j, that connect i with j for all

i, j ∈ S such that i < j. These arrows can be viewed as a way of redefining the
natural ordering < on S. Elements of S can be thought of as “stem elements”
and elements of F can be thought of as “forward witnesses.” Next, we start enu-
merating the c.e. set A1 = S−A. At every stage a new element k is enumerated
into A1, we add new arrows together with appropriate elements from B, the
“backward witnesses,” which intend to exclude k from the initial ordering on S.

More precisely, we add arrows k
bki−→ i for all i with i < k, and arrows j

bjk
−→ k,

for each j with j > k. Eventually, exactly the elements of A1 will be excluded
from the ordering, and the final ordering will be an ordering on the set A.

In the resulting structure, every element x ∈ A1 is connected with every
element y ∈ S such that x 6= y with exactly two arrows: x

w
−→ y and y

w1−→ x.
If x, y ∈ A are such that x 6= y then they are connected with arrows of the type
x

w
−→ y exactly when x < y. In other words, the formula

Φ(x, y) =def ∃wP (x,w, y) ∧ ¬∃w1P (y, w1, x)

will be satisfied by exactly those x, y ∈ A such that x < y. The formula Φ will
not be satisfied by any pair (x, y) for which at least one of x or y has been
excluded.

The following properties of the structure MA follow immediately from the
definition above.

(1) For every w there is at most one pair x, y such that P (x,w, y).
(2) If x ∈ S − A, then for any y ∈ S, y 6= x, there is a unique w1 such that

P (x,w1, y) and a unique w2 such that P (y, w2, x).
(3) If x, y ∈ A, then x < y ⇔ ∃wP (x,w, y).
(4) MA is computable.
To prove (4) note that the relation P is computable because

P (x, z, y) ⇔ x, y ∈ S ∧
[
(x < y ∧ z = fxy) ∨ (x > y ∧ z ∈ B ∧ b−1(z) = 〈x, y〉)

]
.



(5) Let D, E ⊆ S be infinite and such that S−D and S−E are infinite and
c.e. Then MD

∼= ME .
Since D and E are infinite, the orders (D,<) and (E,<), where < is the

natural order, are isomorphic to N. The isomorphism between these orders, ex-
tended by any bijection between S−D and S−E, has a unique natural extension
to a map from the domain of MD to the domain of ME . That is, the arrows
in MD (the elements of F and B) can be uniquely mapped to corresponding
arrows in ME .

To continue with the proof, we let

Θ(x) =def (∃t) [Φ(x, t) ∨ Φ(t, x)] .

The formula Θ(x) defines the set A in MA.
For any structure M=(M,P ) in the language with one ternary predicate

symbol we will use the following notation:

LM =def {x ∈M |M � Θ(x)} ,and
<LM

=def {(x, y) ∈M ×M |M � Φ(x, y)} .
Fix A ⊆ S such that S −A is infinite and c.e.
It follows from the discussion above that the formula Φ(x, y) defines in MA

the restriction of the natural order < to A. Clearly,
(
LMA

, <LMA

)
has order

type ω.

Let M♯
A =

∏
C MA. For partial computable functions g and h such that

[g] , [h] ∈ dom(M♯
A) we have:

(i) M♯
A |= Φ([g] , [h]) ⇔ C ⊆∗ {i| (g(i) ∈ A) ∧ (h(i) ∈ A) ∧ (g(i) < h(i))}

(ii) L
M

♯
A
= {[g] ∈ M♯

A| g(C) ⊆
∗ A} and

(
L
M

♯
A
, <L

M
♯
A

)
is a linear order.

Note that (i) follows from Theorem 3, part (2), since Φ(x, y) is a Boolean
combination of Σ0

1 and Π0
1 formulas.

For the proof of (ii) notice that for any [g] ∈ M♯
A we have either C ⊆∗

{i|g(i) ∈ A} or C ⊆∗ {i|g(i) ∈ ω − A} because C is cohesive and ω − A is c.e.
Since

[g] ∈ L
M

♯
A
⇔ (∃x) [Φ([g] , x) ∨ Φ(x, [g])] ,

the equivalence in part (i) implies that L
M

♯
A
= {[g] ∈ M♯

A| g(C) ⊆∗ A}. It is

easy to show that the relation <L
M

♯
A

is a linear order on L
M

♯
A
.

For any a ∈ A let ha(i) = a for all i ∈ ω. We will call the element [ha] in

M♯
A a constant in M♯

A.

(6) The set of constants {[ha] |a ∈ A} in the structure M♯
A forms an initial

segment of

(
L
M

♯
A
, <L

M
♯
A

)
of order type ω.

Clearly, if a0, a1 ∈ A, then Φ([ha0 ] , [ha1 ]) if and only if a0 < a1. Therefore,
{[ha] |a ∈ A} is an ordered set of type ω. It remains to check that {[ha] |a ∈ A}

is an initial segment. Suppose [h] ∈ M♯
A and a ∈ A are such that M♯

A �



Φ([h] , [ha]). Then

C ⊆∗ {i|MA � Φ(h(i), a)} = {i|h(i) ∈ A ∧ h(i) < a} =
⋃

k∈A∧k<a

{i|h(i) = k}.

The last expression is a union of a finite family of mutually disjoint c.e. sets.
Since C is cohesive, there exists a k ∈ A such that C ⊆∗ {i|h(i) = k}, which
means that [h] = [hk] is a constant.

We now define the following Σ0
3 sentence

Ψ =def (∃x) [Θ(x) ∧ (∀y) [Θ(y) ⇒ Φ(y, x)]] .

The intended interpretation of Ψ is that when Φ(x, t) defines a linear order
(LM, <LM

) , then the order has a greatest element. Note that MA �qΨ. This is

because
(
LMA

, <LMA

)
has order type ω and hence has no greatest element.

Before we continue with the proof we recall Proposition 2.1 from [8].

Proposition 10. (Lerman [8]) Let R be a co-r-maximal set, and let f be a
computable function such that f(R) ∩ R is infinite. Then the restriction f ↾ R
differs from the identity function only finitely.

We now fix a co-maximal (hence co-r-maximal) set C ⊆ S and an infinite
co-infinite computable set D ⊆ S. By property (5) above, we have MC

∼= MD.

Let M♯
C =

∏
C MC and M♯

D =
∏
C MD.

It is not hard to show that, since C is co-maximal, for every partial com-
putable function ϕ for which C ⊆∗ dom(ϕ), there is a computable function fϕ
such that [ϕ] = [fϕ] (see [4]).

To finish the proof we will establish the following facts:
(7) M♯

C � Ψ

(8) M♯
D �qΨ

To prove (7) recall that L
M

♯
C

= {[f ] ∈ M♯
C | f(C) ⊆∗ C}. By Proposition

10 if [f ] ∈ M♯
C is such that f(C) ⊆∗ C and f(C) is infinite, then [f ] = [id] .

If f(C) is finite, then f is eventually a constant on C, because C is cohesive.
Therefore, L

M
♯
C

= {[fc] | c ∈ C} ∪ {[id]}. It is easy to see that if c ∈ C,

then Φ([fc] , [id]). Thus,

(
L
M

♯
C
, <L

M
♯
C

)
has order type ω + 1 with the greatest

element [id]. Therefore, M♯
C � Ψ.

To prove (8), let D = {d0 < d1 < · · · }. The function g defined as g(di) =

di+1 is computable. Suppose that M♯
D � Ψ and let [f ] be the greatest element

in

(
L
M

♯
D
, <L

M
♯
D

)
. Since [f ] <L

M
♯
D

[g ◦ f ] , it follows that M∗
D �qΨ.

In conclusion, we defined computable isomorphic structures MC and MD

such that
∏
C MC and

∏
C MD are not even elementary equivalent. The struc-

ture MC also provides a sharp bound for the fundamental theorem of cohesive
powers. Namely, for the Σ0

3 sentence Ψ, MC �qΨ but
∏
C MC � Ψ .



4 Orders of type ω with cohesive powers not isomorphic

to N + Q × Z

We prove that if C is co-maximal, then there is a computable linear order L of
type ω (necessarily with a non-computable successor function) such that ΠCL ≇

N+Q× Z.

Lemma 11. Let C ⊆ ω be co-c.e., infinite, and co-infinite. Then there is a com-
putable linear order L = (ω,<L) of type ω such that for every partial computable
function ϕ,

∀∞n ∈ C(ϕ(n)↓ ⇒ ϕ(n) is not the L-immediate successor of n). (*)

Proof. Fix an infinite computable set R ⊆ C. We define <L in stages. By the end
of stage s,<L will have been defined onXs×Xs for some finiteXs ⊇ {0, 1, . . . , s}.
At stage 0, setX0 = {0} and define 0 ≮L 0. At stage s > 0, start withXs = Xs−1

and update Xs and <L according to the following procedure.

1. If <L has not yet been defined on s (i.e., if s /∈ Xs), then update Xs to
Xs ∪ {s} and extend <L to make s the <L-greatest element of Xs.

2. Consider each 〈e, n〉 < s in order. If

(a) ϕe,s(n)↓ ∈ Xs,
(b) ϕe(n) is currently the <L-immediate successor of n in Xs,
(c) n /∈ R, and
(d) n is not <L-below any of 0, 1, . . . , e,

then let m be the least element of R − Xs. Update Xs to Xs ∪ {m}, and
extend <L so that n <L m <L ϕe(n).

This completes the construction.
We claim that for every k, there are only finitely many elements <L-below

k. It follows that L is of type ω. Say that ϕe acts for n and adds m when <L

is defined on an m ∈ R to make n <L m <L ϕe(n) as in (2). Let s0 be a stage
with k ∈ Xs0 . Suppose at stage s > s0 we add an m to Xs and define m <L k.
This can only be due to a ϕe acting for an n /∈ R and adding m at stage s. At
stage s, we must have n <L k because n <L m <L k. Therefore, we must also
have e < k, for otherwise k would be among 0, 1, . . . e, and condition (2d) would
prevent the action of ϕe. Furthermore, m is chosen so that m ∈ R and thus
only elements of R are added <L-below k after stage s0. Hence an m can only
be added <L-below k after stage s0 when a ϕe with e < k acts for an n <L k
with n /∈ R. Each ϕe acts at most once for every n, and no new n /∈ R appears
<L-below k after stage s0. Thus, after stage s0, only finitely many m are ever
added <L-below k.

We claim that for every e, (*) holds. Given e, let ℓ be the <L-greatest element
of {0, 1, . . . , e}. Suppose that n >L ℓ and n ∈ C. If ϕe(n)↓, let s be large enough
so that 〈e, n〉 < s, ϕe,s(n)↓, n ∈ Xs, and ϕe(n) ∈ Xs. Then either ϕe(n) is already
not the L-immediate successor of n at stage s+1, or at stage s+1 the conditions
of (2) are satisfied for 〈e, n〉, and an m is added such that n <L m <L ϕe(n).



Theorem 12. Let C be a co-maximal set. Then there is a computable linear
order L of type ω such that [id] does not have a successor in ΠCL. Therefore,
ΠCL ≇ N+Q× Z.

Proof. Let L be a computable linear order as in Lemma 11 for C. Suppose that
ϕ is a partial computable function such that [id] <ΠCL [ϕ]. We show that [ϕ] is
not the <ΠCL-immediate successor of [id]. The inequality [id] <ΠCL [ϕ] means
that (∀∞n ∈ C) (n <L ϕ(n)). However, by Lemma 11,

(∀∞n ∈ C) (ϕ(n) is not the L-immediate successor of n).

Define a partial computable ψ so that, for every n,

ψ(n) =

{
the least m such that n <L m <L ϕ(n) if there is such an m;

↑ otherwise.

Then (∀∞n ∈ C) (n <L ψ(n) <L ϕ(n)). Thus, [id] <ΠCL [ψ] <ΠCL [ϕ]. So, [ϕ]
is not the <ΠCL-immediate successor of [id].

It follows that ΠCL ≇ N + Q × Z because every element of N + Q × Z has
an immediate successor, but [id] ∈ ΠCL does not have an immediate successor.

Note that the sentence Ψ that states that every element has an immediate
successor is Π0

3 . Then for the computable linear order L of type ω constructed
above, L � Ψ but ΠCL �qΨ.
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