Skip to main content

Borel and Baire Sets in Bishop Spaces

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11558))

Abstract

We study the Borel sets \( \texttt {Borel} (F)\) and the Baire sets \( \texttt {Baire} (F)\) generated by a Bishop topology F on a set X. These are inductively defined sets of F-complemented subsets of X. Because of the constructive definition of \( \texttt {Borel} (F)\), and in contrast to classical topology, we show that \( \texttt {Baire} (F) = \texttt {Borel} (F)\). We define the uniform version of an F-complemented subset of X and we show the Urysohn lemma for them. We work within Bishop’s system \(\mathrm {BISH}^*\) of informal constructive mathematics that includes inductive definitions with rules of countably many premises.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A different definition is given in [10]. See [19] for the relations between these two definitions.

  2. 2.

    Hence, if we define the set of Baire sets over an arbitrary family \(\varTheta \) of functions from X to \({\mathbb R}\), a sufficient condition so that \( \texttt {Baire} (\varTheta )\) is closed under complements is that \(\varTheta \) is closed under |.|, under wedge with \(\frac{1}{n}\) and under subtraction with \(\frac{1}{n}\), for every \(n \ge 1\). If \(\varTheta := \mathbb {F}(X, 2)\), then \(- \varvec{o}_{\mathbb {F}(X, 2)}(f) = \varvec{o}_{\mathbb {F}(X, 2)}(1-f) = \varvec{\zeta }_{\mathbb {F}(X, 2)}(f)\), hence by Proposition 4(ii) we get \( \texttt {Borel} (\mathbb {F}(X, 2)) = \texttt {Baire} (\mathbb {F}(X, 2))\).

References

  1. Aczel, P., Rathjen, M.: Constructive Set Theory, Book Draft (2010)

    Google Scholar 

  2. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)

    Google Scholar 

  3. Bishop, E., Cheng, H.: Constructive Measure Theory, vol. 116. Memoirs of the American Mathematical Society (1972)

    Google Scholar 

  4. Bishop, E., Bridges, D.S.: Constructive Analysis. Grundlehren der mathematischen Wissenschaften, vol. 279. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-61667-9

    Book  MATH  Google Scholar 

  5. Bridges, D.S.: Reflections on function spaces. Ann. Pure Appl. Log. 163, 101–110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bridges, D.S., Vîţă, L.S.: Techniques of Constructive Analysis. Universitext. Springer, New York (2006). https://doi.org/10.1007/978-0-387-38147-3

    Book  MATH  Google Scholar 

  7. Coquand, T., Palmgren, E.: Metric Boolean algebras and constructive measure theory. Arch. Math. Logic 41, 687–704 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coquand, T., Spitters, B.: Integrals and valuations. J. Log. Anal. 1(3), 1–22 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand (1960)

    Google Scholar 

  10. Halmos, P.R.: Measure Theory. Springer, New York (1974)

    MATH  Google Scholar 

  11. Hewitt, E.: Linear functionals on spaces of continuous functions. Fund. Math. 37, 161–189 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ishihara, H.: Relating Bishop’s function spaces to neighborhood spaces. Ann. Pure Appl. Log. 164, 482–490 (2013)

    Article  MATH  Google Scholar 

  13. Myhill, J.: Constructive set theory. J. Symb. Log. 40, 347–382 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Petrakis, I.: Constructive topology of Bishop spaces. Ph.D. thesis, LMU (2015)

    Google Scholar 

  15. Petrakis, I.: Completely regular Bishop spaces. In: Beckmann, Arnold, Mitrana, Victor, Soskova, Mariya (eds.) CiE 2015. LNCS, vol. 9136, pp. 302–312. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20028-6_31

    Chapter  Google Scholar 

  16. Petrakis, I.: The Urysohn extension theorem for Bishop spaces. In: Artemov, Sergei, Nerode, Anil (eds.) LFCS 2016. LNCS, vol. 9537, pp. 299–316. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27683-0_21

    Chapter  Google Scholar 

  17. Petrakis, I.: A constructive function-theoretic approach to topological compactness. In: Proceedings of the 31st Annual ACM-IEEEE Symposium on Logic in Computer Science (LICS 2016), 5–8 July 2016, pp. 605–614 (2016)

    Google Scholar 

  18. Petrakis, I.: Constructive uniformities of pseudometrics and Bishop topologies. J. Log. Anal. 42 p. (2019)

    Google Scholar 

  19. Ross, K.A., Stromberg, K.: Baire sets and Baire measures. Arkiv för Matematik 6(8), 151–160 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  20. Spitters, B.: Constructive and intuitionistic integration theory and functional analysis. Ph.D. thesis, University of Nijmegen (2002)

    Google Scholar 

  21. Spitters, B.: Constructive algebraic integration theory. Ann. Pure Appl. Logic 137(1–3), 380–390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This paper was written during my research visit to CMU that was funded by the EU-research project “Computing with Infinite Data”. I would like to thank Wilfried Sieg for hosting me at CMU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosif Petrakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrakis, I. (2019). Borel and Baire Sets in Bishop Spaces. In: Manea, F., Martin, B., Paulusma, D., Primiero, G. (eds) Computing with Foresight and Industry. CiE 2019. Lecture Notes in Computer Science(), vol 11558. Springer, Cham. https://doi.org/10.1007/978-3-030-22996-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22996-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22995-5

  • Online ISBN: 978-3-030-22996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics