Skip to main content

On the Differences and Sums of Strongly Computably Enumerable Real Numbers

  • Conference paper
  • First Online:
Computing with Foresight and Industry (CiE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11558))

Included in the following conference series:

Abstract

A real number is called left c.e. (right c.e.) if it is the limit of an increasing (decreasing) computable sequence of rational numbers. In particular, if a left c.e. real has a c.e. binary expansion, then it is called strongly c.e. While the strongly c.e. reals have nice computational properties, the class of strongly c.e. reals does not have good mathematical properties. In this paper, we show that, for any non-computable strongly c.e. real x, there are strongly c.e. reals \(y_1\) and \(y_2\) such that the difference \(x-y_1\) is neither left c.e., nor right c.e., and the sum \(x\,+\,{y}_2\) is not strongly c.e. Thus, the class of strongly c.e. reals is not closed under addition and subtraction in an extremely strong sense.

This research was done when the first author visited Arcadia University in the fall 2018. We appreciate very much the support of the Department of Mathematics and Computer Science, Arcadia University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One of the referees pointed out an alternative proof of Theorem 1 which follows more easily from results in the literature. It is based on the observation that the difference of two left computable reals which are Solovay incomparable is not semi-computable. So, since Downey, Hirschfeldt and LaForte [9] have shown that Solovay reducibility coincides with computable Lipschitz reducibility on the strongly c.e. reals, it suffices to show that for any noncomputable c.e. set A there is a c.e. set B which is cl-incomparable with A. But, since Barmpalias [3] has shown that there are no maximal c.e. cl-degrees, this can be deduced from Sacks’ Splitting Theorem by duplicating the argument for cl-reducibility which we have given for ibT-reducibility in the remark following the proof of Lemma 2.

References

  1. Ambos-Spies, K., Ding, D., Fan, Y., Merkle, W.: Maximal pairs of computably enumerable sets in the computably Lipschitz degrees. Theory Comput. Syst. 52(1), 2–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambos-Spies, K., Weihrauch, K., Zheng, X.: Weakly computable real numbers. J. Complex. 16(4), 676–690 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barmpalias, G.: Computably enumerable sets in the solovay and the strong weak truth table degrees. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 8–17. Springer, Heidelberg (2005). https://doi.org/10.1007/11494645_2

    Chapter  Google Scholar 

  4. Barmpalias, G., Lewis-Pye, A.: A note on the differences of computably enumerable reals. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds.) Computability and Complexity. LNCS, vol. 10010, pp. 623–632. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50062-1_37

    Chapter  Google Scholar 

  5. Barmpalias, G., Lewis-Pye, A.: Differences of halting probabilities. J. Comput. Syst. Sci. 89, 349–360 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calude, C.S., Hertling, P.H., Khoussainov, B., Wang, Y.: Recursively enumerable reals and Chaitin \(\varOmega \) numbers. Theor. Comput. Sci. 255, 125–149 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Downey, R., Terwijn, S.A.: Computably enumerable reals and uniformly presentable ideals. MLQ Math. Log. Q. 48(suppl. 1), 29–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity Theory and Application of Computability. Springer, Heidelberg (2010). https://doi.org/10.1007/978-0-387-68441-3

    Book  MATH  Google Scholar 

  9. Downey, R.G., Hirschfeldt, D.R., LaForte, L.G.: Randomness and reducibility. J. Comput. Syst. Sci. 68(1), 96–114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Downey, R.G., LaForte, G.L.: Presentations of computably enumerable reals. Theor. Comput. Sci. 284(2), 539–555 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Miller, J.S.: On work of Barmpalias and Lewis-Pye: a derivation on the D.C.E. reals. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds.) Computability and Complexity. LNCS, vol. 10010, pp. 644–659. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50062-1_39

    Chapter  Google Scholar 

  12. Robinson, R.M.: Review of Peter, R. Rekursive Funktionen. J. Symbol. Log. 16, 280–282 (1951)

    Google Scholar 

  13. Schröder, M.: Admissible representations in computable analysis. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 471–480. Springer, Heidelberg (2006). https://doi.org/10.1007/11780342_48

    Chapter  Google Scholar 

  14. Sacks, G.E.: Degrees of Unsolvability. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  15. Robert Irving Soare: Recursion theory and Dedekind cuts. Trans. Am. Math. Soc. 140, 271–294 (1969)

    MATH  Google Scholar 

  16. Turing, A.M.: On computable numbers, with an application to the “Entscheidungsproblem”. Proc. Lond. Math. Soc. 42(2), 230–265 (1936)

    MathSciNet  MATH  Google Scholar 

  17. Weihrauch, K.: An introduction. In: Weihrauch, K. (ed.) Computable Analysis. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-56999-9_1

    Chapter  MATH  Google Scholar 

  18. Guohua, W.: Regular reals. Math. Log. Q. 51(2), 111–119 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zheng, X.: On the turing degrees of weakly computable real numbers. J. Log. Comput. 13(2), 159–172 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zheng, X., Rettinger, R.: Weak computability and representation of reals. Math. Log. Q. 50(4/5), 431–442 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zheng, X., Rettinger, R.: Computability of real numbers. In: Brattka, V., Hertling, P. (eds.) Handbook on Computability and Complexity in Analysis, Theory and Applications of Computability. Springer-Verlag (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xizhong Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ambos-Spies, K., Zheng, X. (2019). On the Differences and Sums of Strongly Computably Enumerable Real Numbers. In: Manea, F., Martin, B., Paulusma, D., Primiero, G. (eds) Computing with Foresight and Industry. CiE 2019. Lecture Notes in Computer Science(), vol 11558. Springer, Cham. https://doi.org/10.1007/978-3-030-22996-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22996-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22995-5

  • Online ISBN: 978-3-030-22996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics