Abstract
Periodic-frequent patterns are sets of items (values) that periodically appear in a sequence of transactions. The periodicity of a pattern is measured by counting the number of times that its periods (the interval between two successive occurrences of the patterns) are greater than a user-defined maxPer threshold. However, an important limitation of this model is that it can find many patterns having a periodicity that vary widely due to the strict maxPer constraint. But finding stable patterns is desirable for many applications as they are more predictable than unstable patterns. This paper addresses this limitation by proposing to discover a novel type of periodic-frequent patterns in transactional databases, called Stable Periodic-frequent Pattern (SPP), which are patterns having a stable periodicity, and a pattern-growth algorithm named SPP-growth to discover all SPP. An experimental evaluation on four datasets shows that SPP-growth is efficient and can find insightful patterns that are not found by traditional algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bodon, F., Schmidt-Thieme, L.: The relation of closed itemset mining, complete pruning strategies and item ordering in apriori-based FIM algorithms. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 437–444. Springer, Heidelberg (2005). https://doi.org/10.1007/11564126_43
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of 26th ACM SIGMOD International Conference on Management of Data, pp. 1–12 (2000)
Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: Proceedings of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 326–335 (2003)
Fournier-Viger, P., Lin, J.C.-W., Vo, B., Truong, T.C., Zhang, J., Le, H.B.: A survey of itemset mining. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 7(4), e1207 (2017)
Gouda, K., Zaki, M.J.: Efficiently mining maximal frequent itemsets. In: Proceedings of 17th IEEE International Conference on Data Mining, pp. 163–170 (2001)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7_25
Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 83–92. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_9
Tanbeer, S.K., Ahmed, C.F., Jeong, B.S., Lee, Y.K.: Discovering periodic-frequent patterns in transactional databases. In: 13th Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 242–253 (2009)
Kiran, R.U., Kitsuregawa, M., Reddy, P.K.: Efficient discovery of periodic-frequent patterns in very large databases. J. Syst. Softw. 112, 110–121 (2016)
Fong, A.C.M., Zhou, B., Hui, S.C., Hong, G.Y., Do, T.: Web content recommender system based on consumer behavior modeling. IEEE Trans. Consum. Electron. 57(2), 962–969 (2011)
Amphawan, K., Lenca, P., Surarerks, A.: Mining top-K periodic-frequent pattern from transactional databases without support threshold. In: Papasratorn, B., Chutimaskul, W., Porkaew, K., Vanijja, V. (eds.) IAIT 2009. CCIS, vol. 55, pp. 18–29. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10392-6_3
Fournier-Viger, P., Lin, J.C.-W., Duong, Q.-H., Dam, T.-L.: PHM: mining periodic high-utility itemsets. In: Perner, P. (ed.) ICDM 2016. LNCS (LNAI), vol. 9728, pp. 64–79. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41561-1_6
Surana, A., Kiran, R.U., Reddy, P.K.: An efficient approach to mine periodic-frequent patterns in transactional databases. In: Cao, L., Huang, J.Z., Bailey, J., Koh, Y.S., Luo, J. (eds.) PAKDD 2011. LNCS (LNAI), vol. 7104, pp. 254–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28320-8_22
Kiran, R.U., Venkatesh, J.N., Fournier-Viger, P., Toyoda, M., Reddy, P.K., Kitsuregawa, M.: Discovering periodic patterns in non-uniform temporal databases. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10235, pp. 604–617. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57529-2_47
Fournier-Viger, P., Li, Z., Lin, J.C.-W., Kiran, R.U., Fujita, H.: Discovering periodic patterns common to multiple sequences. In: Ordonez, C., Bellatreche, L. (eds.) DaWaK 2018. LNCS, vol. 11031, pp. 231–246. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98539-8_18
Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.: SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. (JMLR) 15, 3389–3393 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Fournier-Viger, P., Yang, P., Lin, J.CW., Kiran, R.U. (2019). Discovering Stable Periodic-Frequent Patterns in Transactional Data. In: Wotawa, F., Friedrich, G., Pill, I., Koitz-Hristov, R., Ali, M. (eds) Advances and Trends in Artificial Intelligence. From Theory to Practice. IEA/AIE 2019. Lecture Notes in Computer Science(), vol 11606. Springer, Cham. https://doi.org/10.1007/978-3-030-22999-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-22999-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22998-6
Online ISBN: 978-3-030-22999-3
eBook Packages: Computer ScienceComputer Science (R0)