Skip to main content

Discovering Stable Periodic-Frequent Patterns in Transactional Data

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. From Theory to Practice (IEA/AIE 2019)

Abstract

Periodic-frequent patterns are sets of items (values) that periodically appear in a sequence of transactions. The periodicity of a pattern is measured by counting the number of times that its periods (the interval between two successive occurrences of the patterns) are greater than a user-defined maxPer threshold. However, an important limitation of this model is that it can find many patterns having a periodicity that vary widely due to the strict maxPer constraint. But finding stable patterns is desirable for many applications as they are more predictable than unstable patterns. This paper addresses this limitation by proposing to discover a novel type of periodic-frequent patterns in transactional databases, called Stable Periodic-frequent Pattern (SPP), which are patterns having a stable periodicity, and a pattern-growth algorithm named SPP-growth to discover all SPP. An experimental evaluation on four datasets shows that SPP-growth is efficient and can find insightful patterns that are not found by traditional algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bodon, F., Schmidt-Thieme, L.: The relation of closed itemset mining, complete pruning strategies and item ordering in apriori-based FIM algorithms. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 437–444. Springer, Heidelberg (2005). https://doi.org/10.1007/11564126_43

    Chapter  Google Scholar 

  2. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of 26th ACM SIGMOD International Conference on Management of Data, pp. 1–12 (2000)

    Google Scholar 

  3. Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: Proceedings of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 326–335 (2003)

    Google Scholar 

  4. Fournier-Viger, P., Lin, J.C.-W., Vo, B., Truong, T.C., Zhang, J., Le, H.B.: A survey of itemset mining. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 7(4), e1207 (2017)

    Article  Google Scholar 

  5. Gouda, K., Zaki, M.J.: Efficiently mining maximal frequent itemsets. In: Proceedings of 17th IEEE International Conference on Data Mining, pp. 163–170 (2001)

    Google Scholar 

  6. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7_25

    Chapter  Google Scholar 

  7. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 83–92. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_9

    Chapter  Google Scholar 

  8. Tanbeer, S.K., Ahmed, C.F., Jeong, B.S., Lee, Y.K.: Discovering periodic-frequent patterns in transactional databases. In: 13th Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 242–253 (2009)

    Google Scholar 

  9. Kiran, R.U., Kitsuregawa, M., Reddy, P.K.: Efficient discovery of periodic-frequent patterns in very large databases. J. Syst. Softw. 112, 110–121 (2016)

    Article  Google Scholar 

  10. Fong, A.C.M., Zhou, B., Hui, S.C., Hong, G.Y., Do, T.: Web content recommender system based on consumer behavior modeling. IEEE Trans. Consum. Electron. 57(2), 962–969 (2011)

    Article  Google Scholar 

  11. Amphawan, K., Lenca, P., Surarerks, A.: Mining top-K periodic-frequent pattern from transactional databases without support threshold. In: Papasratorn, B., Chutimaskul, W., Porkaew, K., Vanijja, V. (eds.) IAIT 2009. CCIS, vol. 55, pp. 18–29. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10392-6_3

    Chapter  Google Scholar 

  12. Fournier-Viger, P., Lin, J.C.-W., Duong, Q.-H., Dam, T.-L.: PHM: mining periodic high-utility itemsets. In: Perner, P. (ed.) ICDM 2016. LNCS (LNAI), vol. 9728, pp. 64–79. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41561-1_6

    Chapter  Google Scholar 

  13. Surana, A., Kiran, R.U., Reddy, P.K.: An efficient approach to mine periodic-frequent patterns in transactional databases. In: Cao, L., Huang, J.Z., Bailey, J., Koh, Y.S., Luo, J. (eds.) PAKDD 2011. LNCS (LNAI), vol. 7104, pp. 254–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28320-8_22

    Chapter  Google Scholar 

  14. Kiran, R.U., Venkatesh, J.N., Fournier-Viger, P., Toyoda, M., Reddy, P.K., Kitsuregawa, M.: Discovering periodic patterns in non-uniform temporal databases. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10235, pp. 604–617. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57529-2_47

    Chapter  Google Scholar 

  15. Fournier-Viger, P., Li, Z., Lin, J.C.-W., Kiran, R.U., Fujita, H.: Discovering periodic patterns common to multiple sequences. In: Ordonez, C., Bellatreche, L. (eds.) DaWaK 2018. LNCS, vol. 11031, pp. 231–246. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98539-8_18

    Chapter  Google Scholar 

  16. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.: SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. (JMLR) 15, 3389–3393 (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Fournier-Viger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fournier-Viger, P., Yang, P., Lin, J.CW., Kiran, R.U. (2019). Discovering Stable Periodic-Frequent Patterns in Transactional Data. In: Wotawa, F., Friedrich, G., Pill, I., Koitz-Hristov, R., Ali, M. (eds) Advances and Trends in Artificial Intelligence. From Theory to Practice. IEA/AIE 2019. Lecture Notes in Computer Science(), vol 11606. Springer, Cham. https://doi.org/10.1007/978-3-030-22999-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22999-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22998-6

  • Online ISBN: 978-3-030-22999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics