Abstract
The use of fuzzy logic to generate optimal actions for hardware architecture reconfiguration offers flexible and efficient solutions. In this paper, a new fuzzy approach is proposed in order to guarantee the balance between real time periodic application schedulability and energy consumption optimization under multi-core architecture. Dynamic voltage/frequency scaling (DVFS) has been a key technique in exploiting the processors configurable characteristics. However, for large class of applications in embedded real time systems, the variable operating frequency interferes with tasks deadline respect. The problem is seen as multi-criteria multi-objective decision making issue with dependent criteria. The approach calculates, in offline mode and in online mode, the optimal number of activated homogenous cores and their frequency. Simulated and tested on periodic task sets generated with different system charges, the proposed intelligent technique is support decision system that shows significant results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pomerol, J.: Artificial intelligence and human decision making. Eur. J. Oper. Res. 2(99), 3–25 (1997)
Nazmul, H., Alam Hossain, Md., Fayezul, I., Priyanka, B., Tahira, Y.: Research on energy efficiency in cloud computing. Int. J. Sci. Eng. Res. 7(8), 358–367 (2016)
Char, J.C., Fakhfakh, A., Couterrier, R., Glerch, A.: Dynamic frequency scaling for energy consumption reduction in synchronous distributed applications. In: 13th IEEE International Symposium on Parallel and Distributed Processing with Applications. IEEE (2016)
Qadri, M.Y., Qadri, N.N., McDonald-Maier, K.D.: Fuzzy logic based energy and throughput aware design space exploration for MPSoCs. Microprocess. Microsyst. 3(2), 68–73 (2015)
Qadri, M.Y., McDonald-Maier, K.D., Qadri, N.N.: Energy and throughputs aware fuzzy logic based reconfiguration for MPSoC. J. Intell. Fuzzy Syst. 3(2), 68–73 (2014)
Fakhfakh, M.M.: Energy consumption optimization of parallel applications with iterations using CPU frequency scaling. Thesis (2016)
Rauber, T., Runger, G., Schwind, M., Xu, M., Melzner, S.: Energy measurement, modeling, and prediction for processors with frequency scaling. J. Supercomput. 70(3), 1451–1476 (2014)
Rountree, B., Lowenthal, D., Funk, S., Freeh, V.W., De Supinski, B., Schulz, M.: Bounding energy consumption in large-scale MPI programs. In: Proceedings of the 2007 ACM/IEEE Conference on, pp. 1–9 (2007)
Cochran, R., Hankendi, C., Coskun, A., Reda, S.,: Identifying the optimal energy-efficient operating points of parallel workloads. In: Proceedings of the International Conference on Computer-Aided Design, ICCAD 2011, IEEE Press, NJ, pp. 608–615 (2011)
Henkel, J., Parameswaran, S.: Designing Embedded Processors: A lower Power Perspective. Springer, Heidelberg (2007). https://doi.org/10.1007/978-1-4020-5869-1
Da Rosa, T.D., Larrea, V., Calazans, N., Gehm-Moraes, F.: Power consumption reduction in MPSoCs through DFS. In: SBCCI, pp. 1–6 (2012)
Parain, F., Banâtre, M., Cabillic, G., Higuera-Toledano, T., Issarny, V.: Lesot: Techniques de réduction de la consommation dans un système embarqué temps réel. Technique et Science Informatiques 20(10), 1247–1278 (2001)
Navet, N., Grajar, B.: Systemés temps réel, Hermes (2006)
Baker, T.P., Cirinei, M.: A necessary and sometimes sufficient condition for the feasibility of sets of sporadic hard-deadline tasks. In: Proceedings of IEEE Real-Time Systems Symposium (RTSS), pp 178–190. IEEE Press (2006)
Jing, L., Luo, Z., Ferry, D., Agrawal, K., Gill, C., Lu, C.: Global EDF scheduling for parallel real time tasks. Real-Time Syst. 51(4), 395–439 (2015)
Ibrahim, A.: Fuzzy Logic for Embedded Systems Applications. Butterworth, Heinemann, Newton (2003)
Najar, Y., Ben Ahmed, S.: Fuzzy multiprocessor architecture reconfiguration based on dynamic frequency scaling. In: Proceedings of ISKE, pp. 761–767. IEEE Press (2017)
Bellman, R., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17, 141–164 (1970)
Kickert, W.: Fuzzy Theories on Decision Making: A Critical Review. Frontiers in System Research. Springer, Heidelberg (1979)
IEC, International Standard: Programmable Controllers – Part 7: Fuzzy Control Programming, International Electrotechnical Commission, Geneva, Switzerland, iEC Standard (2000)
Intel. Embedded Ultra-Low Power Intel486 GX Processor. Datasheet, Intel
Chetto, M.: Ordonnancement dans les systèmes temps réel: optimisation de la consommation énergétique. ISTE éditions (2014)
Reza P.H., Echeverri, E.J., Pineda, G.: Synthesis and VHDL implementation of fuzzy logic controller for dynamic voltage and frequency scaling (DVFS) goals in digital processors. In: Fuzzy Logic - Controls, Concepts, Theories and Applications (2012)
Shen, H., Lu, H., Qiu, Q.: Learning based DVFS for simultaneous temperature, performance and energy management. In: ISQED (2012)
Gaurav, D., Tajana, S.R.: Dynamic voltage frequency scaling for multi-tasking systems using online learning. In: ISLPED 2007, Portland, Oregon, USA, pp. 207–212 (2007)
Shaheryar, N., Jameel, A.: Real-time implementation of fuzzy logic based DVFS for Leon3 architecture. Asian J. Eng. Sci. Technol. 8(1) (2018)
Ahmed, J., Siyal, M.Y., Najam, S., Najam, Z.: Fuzzy Logic Based Power-Efficient Real-Time Multi-Core System. SAST. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-3120-5
Carlsson, C., Fullér, R.: Fuzzy multiple criteria decision making: recent developments. Fuzzy Sets Syst. 78, 139–153 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Yousra, N., Samir, B.A. (2019). Intelligent Online Configuration for DVFS Multiprocessor Architecture: Fuzzy Approach. In: Wotawa, F., Friedrich, G., Pill, I., Koitz-Hristov, R., Ali, M. (eds) Advances and Trends in Artificial Intelligence. From Theory to Practice. IEA/AIE 2019. Lecture Notes in Computer Science(), vol 11606. Springer, Cham. https://doi.org/10.1007/978-3-030-22999-3_53
Download citation
DOI: https://doi.org/10.1007/978-3-030-22999-3_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22998-6
Online ISBN: 978-3-030-22999-3
eBook Packages: Computer ScienceComputer Science (R0)