Skip to main content

SMT-based Planning for Robots in Smart Factories

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. From Theory to Practice (IEA/AIE 2019)

Abstract

Smart factories are on the verge of becoming the new industrial paradigm, wherein optimization permeates all aspects of production, from concept generation to sales. To fully pursue this paradigm, flexibility in the production means as well as in their timely organization is of paramount importance. AI planning can play a major role in this transition, but the scenarios encountered in practice might be challenging for current tools. We explore the use of SMT at the core of planning techniques to deal with real-world scenarios in the emerging smart factory paradigm. We present special-purpose and general-purpose algorithms, based on current automated reasoning technology and designed to tackle complex application domains. We evaluate their effectiveness and respective merits on a logistic scenario, also extending the comparison to other state-of-the-art task planners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.robocup-logistics.org/sim-comp.

  2. 2.

    RCLLPlan exploits a simple cost definition in its current state, i.e., minimize time to delivery for each product. However, richer goal structures could be specified.

  3. 3.

    https://github.com/timn/ros-rcll_ros/tree/master/pddl.

References

  1. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability (2009)

    Google Scholar 

  2. Benton, J., Coles, A., Coles, A.: Temporal planning with preferences and time-dependent continuous costs. In: ICAPS (2012)

    Google Scholar 

  3. Bit-Monnot, A.: Temporal and hierarchical models for planning and acting in robotics. Ph.D. thesis, Université de Toulouse (2016)

    Google Scholar 

  4. Bit-Monnot, A.: A constraint-based encoding for domain-independent temporal planning. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 30–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_3

    Chapter  Google Scholar 

  5. Bjørner, N., Phan, A.-D., Fleckenstein, L.: vZ - an optimizing SMT solver. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_14

    Chapter  Google Scholar 

  6. Cashmore, M., Fox, M., Long, D., Magazzeni, D.: A compilation of the full PDDL+ language into SMT. In: ICAPS (2016)

    Google Scholar 

  7. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability modulo the theory of costs: foundations and applications. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_8

    Chapter  MATH  Google Scholar 

  8. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_23

    Chapter  Google Scholar 

  9. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7

    Chapter  MATH  Google Scholar 

  10. Coles, A., Coles, A., Fox, M., Long, D.: Forward-chaining partial-order planning. In: ICAPS (2010)

    Google Scholar 

  11. Cushing, W., Kambhampati, S., Mausam, Weld, D.S.: When is temporal planning really temporal? In: IJCAI (2007)

    Google Scholar 

  12. Dvorák, F., Barták, R., Bit-Monnot, A., Ingrand, F., Ghallab, M.: Planning and acting with temporal and hierarchical decomposition models. In: ICTAI (2014)

    Google Scholar 

  13. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning domains. JAIR 20, 61–124 (2003)

    Article  Google Scholar 

  14. Ghallab, M., Laruelle, H.: Representation and control in IxTeT, a temporal planner. In: AIPS (1994)

    Google Scholar 

  15. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory and Practice (2004)

    Google Scholar 

  16. Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects and mixed initiative planning using PDDL. In: ICTAI (2004)

    Google Scholar 

  17. Kautz, H.A., Selman, B.: Planning as satisfiability. In: ECAI (1992)

    Google Scholar 

  18. Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: FLAIRS (2008)

    Google Scholar 

  19. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: Reasoning with conditional time-intervals. Part II: an algebraical model for resources. In: FLAIRS (2009)

    Google Scholar 

  20. Leofante, F., Ábrahám, E., Niemueller, T., Lakemeyer, G., Tacchella, A.: On the synthesis of guaranteed-quality plans for robot fleets in logistics scenarios via optimization modulo theories. In: IRI (2017)

    Google Scholar 

  21. Leofante, F., Ábrahám, E., Niemueller, T., Lakemeyer, G., Tacchella, A.: Integrated synthesis and execution of optimal plans for multi-robot systems in logistics. Inf. Syst. Front. 21, 87–107 (2018)

    Article  Google Scholar 

  22. Leofante, F., Ábrahám, E., Tacchella, A.: Task planning with OMT: an application to production logistics. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 316–325. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98938-9_18

    Chapter  Google Scholar 

  23. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  24. Niemueller, T., Karpas, E., Vaquero, T., Timmons, E.: Planning competition for logistics robots in simulation. In: PlanRob (2016)

    Google Scholar 

  25. Niemueller, T., Lakemeyer, G., Ferrein, A.: The RoboCup logistics league as a benchmark for planning in robotics. In: PlanRob (2015)

    Google Scholar 

  26. Smith, D.E., Frank, J., Cushing, W.: The ANML Language. In: ICAPS (2008)

    Google Scholar 

  27. Zhong, R.Y., Xu, X., Klotz, E., Newman, S.T.: Intelligent manufacturing in the context of industry 4.0: a review. Engineering 3(5), 616–630 (2017)

    Article  Google Scholar 

  28. Zwilling, F., Niemueller, T., Lakemeyer, G.: Simulation for the RoboCup logistics league with real-world environment agency and multi-level abstraction. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp. 220–232. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18615-3_18

    Chapter  Google Scholar 

Download references

Acknowledgements

The research of Arthur Bit-Monnot and Luca Pulina has been funded by the EU Commission’s H2020 Program under grant agreement N.732105 (CERBERO project). The research of Luca Pulina has been also partially funded by the Sardinian Regional Project PROSSIMO (POR FESR 2014/20-ASSE I) and the FitOptiVis (ID: 783162) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Bit-Monnot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bit-Monnot, A., Leofante, F., Pulina, L., Tacchella, A. (2019). SMT-based Planning for Robots in Smart Factories. In: Wotawa, F., Friedrich, G., Pill, I., Koitz-Hristov, R., Ali, M. (eds) Advances and Trends in Artificial Intelligence. From Theory to Practice. IEA/AIE 2019. Lecture Notes in Computer Science(), vol 11606. Springer, Cham. https://doi.org/10.1007/978-3-030-22999-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22999-3_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22998-6

  • Online ISBN: 978-3-030-22999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics