Skip to main content

Evaluating the Accuracy and Efficiency of Sentiment Analysis Pipelines with UIMA

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2019)

Abstract

Sentiment analysis methods co-ordinate text mining components, such as sentence splitters, tokenisers and classifiers, into pipelined applications to automatically analyse the emotions or sentiment expressed in textual content. However, the performance of sentiment analysis pipelines is known to be substantially affected by the constituent components. In this paper, we leverage the Unstructured Information Management Architecture (UIMA) to seamlessly co-ordinate components into sentiment analysis pipelines. We then evaluate a wide range of different combinations of text mining components to identify optimal settings. More specifically, we evaluate different pre-processing components, e.g. tokenisers and stemmers, feature weighting schemes, e.g. TF and TFIDF, feature types, e.g. bigrams, trigrams and bigrams+trigrams, and classification algorithms, e.g. Support Vector Machines, Random Forest and Naive Bayes, against 6 publicly available datasets. The results demonstrate that optimal configurations are consistent across the 6 datasets while our UIMA-based pipeline yields a robust performance when compared to baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    docs.oracle.com/javase/7/docs/api/java/util/StringTokenizer.html.

  2. 2.

    snowball.tartarus.org/algorithms/english/stemmer.html.

  3. 3.

    snowball.tartarus.org/algorithms/porter/stemmer.html.

  4. 4.

    Only CNB and LIB were evaluated on Senti-140, as the other classifiers failed to run due to out-of-memory errors.

References

  1. Altrabsheh, N., Cocea, M., Fallahkhair, S.: Sentiment analysis: towards a tool for analysing real-time students feedback. In: ICTAI 2014, pp. 419–423. IEEE (2014)

    Google Scholar 

  2. Batista-Navarro, R., Carter, J., Ananiadou, S.: Argo: enabling the development of bespoke workflows and services for disease annotation. Database 2016 (2016)

    Google Scholar 

  3. Dridi, A., Recupero, D.R.: Leveraging semantics for sentiment polarity detection in social media. Int. J. Mach. Learn. Cybern., 1–11 (2017)

    Google Scholar 

  4. Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured information processing in the corporate research environment. Nat. Lang. Eng. 10(3–4), 327–348 (2004)

    Article  Google Scholar 

  5. Go, A., Huang, L., Bhayani, R.: Twitter sentiment analysis. CS224N Project Report, Stanford (2009)

    Google Scholar 

  6. Greaves, F., Ramirez-Cano, D., Millett, C., et al.: Use of sentiment analysis for capturing patient experience from free-text comments posted online. J. Med. Internet Res. 15(11), e239 (2013)

    Article  Google Scholar 

  7. Khuc, V.N., Shivade, C., Ramnath, R., et al.: Towards building large-scale distributed systems for Twitter sentiment analysis. In: Proceedings of SAC, pp. 459–464. ACM (2012)

    Google Scholar 

  8. Kontonatsios, G., Thompson, P., Batista-Navarro, R.T., et al.: Extending an interoperable platform to facilitate the creation of multilingual and multimodal NLP applications. In: Proceedings of ACL 2013: System Demonstrations, pp. 43–48 (2013)

    Google Scholar 

  9. Kotzias, D., Denil, M., De Freitas, N., et al.: From group to individual labels using deep features. In: Proceedings of ACM SIGKDD 2015, pp. 597–606. ACM (2015)

    Google Scholar 

  10. Mohammad, S.M., Kiritchenko, S., Zhu, X.: NRC-Canada: Building the state-of-the-art in sentiment analysis of Tweets. arXiv preprint arXiv:1308.6242 (2013)

  11. Pal, S., Ghosh, S.: Sentiment analysis using averaged histogram. Int. J. Comput. Appl. 162(12) (2017)

    Google Scholar 

  12. Ren, Y., Wang, R., Ji, D.: A topic-enhanced word embedding for twitter sentiment classification. Inf. Sci. 369, 188–198 (2016)

    Article  Google Scholar 

  13. Rodrıguez-Penagos, C., Narbona, D.G., Sanabre, G.M., et al.: Sentiment analysis and visualization using UIMA and Solr. Unstructured Information Management Architecture (UIMA), p. 42 (2013)

    Google Scholar 

  14. Rosenthal, S., Farra, N., Nakov, P.: SemEval-2017 task 4: sentiment analysis in Twitter. In: Proceedings of SemEval-2017, pp. 502–518 (2017)

    Google Scholar 

  15. Sarker, A., Gonzalez, G.: HLP@UPenn at SemEval-2017 task 4A: a simple, self-optimizing text classification system combining dense and sparse vectors. In: Proceedings of SemEval-2017, pp. 640–643 (2017)

    Google Scholar 

  16. Sarma, P.K., Sethares, W.: Simple algorithms for sentiment analysis on sentiment rich, data poor domains. In: Proceedings of ACL 2018, pp. 3424–3435 (2018)

    Google Scholar 

  17. Sohn, S., Savova, G.K.: Mayo clinic smoking status classification system: extensions and improvements. In: AMIA Annual Symposium Proceedings, vol. 2009, p. 619. American Medical Informatics Association (2009)

    Google Scholar 

  18. UMICH: Dataset SI650 - sentiment classification (2011). https://goo.gl/Xfr8lI

  19. Zavattaro, S.M., French, P.E., Mohanty, S.D.: A sentiment analysis of US local government Tweets: the connection between tone and citizen involvement. Gov. Inf. Q. 32(3), 333–341 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This research work is part of the TYPHON Project, which has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 780251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Korkontzelos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Altrabsheh, N., Kontonatsios, G., Korkontzelos, Y. (2019). Evaluating the Accuracy and Efficiency of Sentiment Analysis Pipelines with UIMA. In: Métais, E., Meziane, F., Vadera, S., Sugumaran, V., Saraee, M. (eds) Natural Language Processing and Information Systems. NLDB 2019. Lecture Notes in Computer Science(), vol 11608. Springer, Cham. https://doi.org/10.1007/978-3-030-23281-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23281-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23280-1

  • Online ISBN: 978-3-030-23281-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics