Skip to main content

Contextualized Word Embeddings in a Neural Open Information Extraction Model

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11608))

  • 1733 Accesses

Abstract

Open Information Extraction (OIE) is a challenging task of extracting relation tuples from an unstructured corpus. While several OIE algorithms have been developed in the past decade, only few employ deep learning techniques. In this paper, a novel OIE neural model that leverages Recurrent Neural Networks (RNN) using Gated Recurrent Units (GRUs) is presented. Moreover, we integrate the innovative contextual word embeddings into our OIE model, which further enhances the performance. The results demonstrate that our proposed neural OIE model outperforms the existing state-of-art on two datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  2. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE (2013)

    Google Scholar 

  3. Li, B., et al.: Acoustic modeling for Google Home. In: Interspeech (2017)

    Google Scholar 

  4. Chung, H., et al.: Alexa, can I trust you? Computer 50(9), 100–104 (2017)

    Article  Google Scholar 

  5. Yin, W., et al.: Comparative study of CNN and RNN for natural language processing. arXiv preprint arXiv:1702.01923 (2017)

  6. Sarhan, I., Spruit, M.: Uncovering algorithmic approaches in open information extraction: a literature review. In: 30th Benelux Conference on Artificial Intelligence. Springer CSAI/JADS (2018)

    Google Scholar 

  7. Gamallo, P.: An over view of open information extraction (invited talk). In: OASIcs-Open Access Series in Informatics, vol. 38. Schloss Dagstuhl Leibniz Zentrum fuer Informatik (2014)

    Google Scholar 

  8. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. In: IJCAI, vol. 7, pp. 2670–2676 (2007)

    Google Scholar 

  9. Wu, F., Weld, D.S.: Open information extraction using Wikipedia. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics (2010)

    Google Scholar 

  10. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2011)

    Google Scholar 

  11. Etzioni, O., Fader, A., Christensen, J., Soderland, S., Mausam, M.: Open information extraction: the second generation. In: IJCAI, vol. 11, pp. 3–10 (2011)

    Google Scholar 

  12. Del Corro, L., Gemulla, R.: ClausIE: clause-based open information extraction. In: Proceedings of the 22nd International Conference on WWW, pp. 355–366. ACM (2013)

    Google Scholar 

  13. Cui, L., Wei, F., Zhou, M.: Neural open information extraction. arXiv:1805.04270 (2018)

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  15. Stanovsky, G., et al.: Supervised open information extraction. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), vol. 1 (2018)

    Google Scholar 

  16. Loper, E., Bird, S.: NLTK: the natural language toolkit. arXiv preprint cs/0205028 (2002)

    Google Scholar 

  17. Peters, M.E., et al.: Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018)

  18. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation. In: 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (2014)

    Google Scholar 

  19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  20. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning (2013)

    Google Scholar 

  21. Vukotic, V., Raymond, C., Gravier, G.: A step beyond local observations with a dialog aware bidirectional GRU network for Spoken Language Understanding. In: Interspeech (2016)

    Google Scholar 

  22. Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP (2014)

    Google Scholar 

  23. Bansal, T., Belanger, D., McCallum, A.: Ask the GRU: multi-task learning for deep text recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems. ACM (2016)

    Google Scholar 

  24. Ramshaw, L.A., Marcus, M.P.: Text chunking using transformation-based learning. In: Armstrong, S., Church, K., Isabelle, P., Manzi, S., Tzoukermann, E., Yarowsky, D. (eds.) Natural Language Processing Using Very Large Corpora. Text, Speech and Language Technology, vol. 11, pp. 157–176. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-2390-9_10

    Chapter  Google Scholar 

  25. Chollet, F.: Keras 2015. https://github.com/fchollet/keras. Accessed 20 Mar 2019

  26. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th Symposium on Operating Systems Design and Implementation (OSDI 2016) (2016)

    Google Scholar 

  27. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10) (2010)

    Google Scholar 

  28. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  29. Stanovsky, G., Dagan, I.: Creating a large benchmark for open information extraction. In: Proceedings of the 2016 Conference on EMNLP (2016)

    Google Scholar 

  30. Yang, Z., et al.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Injy Sarhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarhan, I., Spruit, M.R. (2019). Contextualized Word Embeddings in a Neural Open Information Extraction Model. In: Métais, E., Meziane, F., Vadera, S., Sugumaran, V., Saraee, M. (eds) Natural Language Processing and Information Systems. NLDB 2019. Lecture Notes in Computer Science(), vol 11608. Springer, Cham. https://doi.org/10.1007/978-3-030-23281-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23281-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23280-1

  • Online ISBN: 978-3-030-23281-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics