
Using GAN to Generate Sport News
from Live Game Stats

Changliang Li1(B), Yixin Su2, Ji Qi3, and Min Xiao4

1 Kingsoft AI Lab, Beijing, China
lichangliang@kingsoft.com

2 University of Melbourne, Parkville, Australia
yixins1@student.unimelb.edu.au

3 Kingsoft WPS AI, Wuhu, Anhui, China
qiji1@wps.cn

4 Beijing University of Posts and Telecommunications, Beijing, China
xiaomincloud@gmail.com

Abstract. One goal in artificial intelligence field is to create well-formed
and human-like natural language text given data input and a specific
goal. Some data-to-text solutions have been proposed and successfully
used in real applied domains. Our work focuses on a new domain, Auto-
matic Sport News Generating, which aims to produce sport news imme-
diately after each match is over so that both time and labor can be saved
on writing the news articles. We propose to use Generative Adversarial
Networks (GAN) architecture for generating sport news based on game
stats. Our model can automatically determine what is worth reporting
and generate various appropriate descriptions about the game. We apply
our approach to generate NBA (National Basketball Association) game
news. Especially, This paper focuses on reporting the summary of game
result and performance of players. Our model achieves good results on
both tasks. To our best knowledge, this is the first work based on GAN
to generate sports news using game statistics.

Keywords: GANs · Text generation · Natural language processing

1 Introduction

Natural Language Generation (NLG) and data-to-text approaches have gained
increasing attention in recent years due to the applicability and challenge. By
automatically generating high quality texts based on extracted relevant infor-
mation from the source data, these approaches can eliminate the gap between
raw data and human users.

There are some data-to-text solutions have been proposed for specific
domains. There are some examples, generation of weather reports from meteo-
rological data in several languages [23,24], the creation of custom letters which
answer customers’ questions [25], the generation of reports about the state of

c© Springer Nature Switzerland AG 2019
R. Xu et al. (Eds.): ICCC 2019, LNCS 11518, pp. 102–116, 2019.
https://doi.org/10.1007/978-3-030-23407-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23407-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-23407-2_9


Using GAN to Generate Sport News from Live Game Stats 103

neonatal babies from intensive care data [26], and the generation of project man-
agement [27] and air quality reports [28].

With the development of sports (such as football and basketball), there are
thousands of games concerned by billions of people every year. In this paper, we
propose an Automatic Sport News Generating System, which aims to produce
sport news immediately after each match is over so that saves both time and
labor on writing the news articles. However, there are few researches in this
area by now, especially using machine learning models, which leaves space in
generating articles with better quality. One of the latest research in this area
simplifies it into learning to rank problem. This method just pieces together past
news sentences based on live comments instead of actually generating sentences
using the match data [3]. In this paper, our system generates National Basketball
Association (NBA) game news directly from stats. NBA games news usually
consists of three parts: the first part summarizes the overall game result; the
second part describes player’s performance; the last part describes the situation
and events occurred during each of four sections. This paper focuses on first two
parts, which are closely related to the game stats.

Recently, Generative Adversarial Networks (GAN) [1] have been introduced
as a novel way to train a generative model. It has significantly improved several
machine learning research fields, such as image generation [13], video prediction
[7] and other domains [6,8,14]. The newly proposed WGAN, which solved the
convergence problem, has enable the GAN to be utilized on fields based on
discrete data, such as Natural Language Procession (NLP).

In this work, our Automatic Sport News Generating System is based on
WGAN. There are two models that fulfil different generating tasks in the system.
First we leverage a WGAN model to generate most important and variable
phrases that can accurately describe the match or player’s performances. Then,
by putting these phrases together with other constant information into template-
based sentence generator, fluent sentences can be generated. This procedure
ensures that the generated sentences are well-written and brings clarity to the
reader, which is important in sports news. Concatenating outputs from Summary
Sentence Generating Model (SSGM), and Player Performance Generating Model
(PPGM), the system finally generates the most important parts in NBA sport
news.

The main contribution of our system is that it can generate proper phrases
to describe different matches, without the intervene of experts (news writers in
sport news) or rules. For example, the system can judge which player plays good
in a match and generates corresponding phrases to describe him. This process
is automatically performed by WGAN according to real news and stats. Fur-
thermore, we define a series of rules for sentence generator so that the generated
sentences will be various, and are more close to idiomatic expression. As our best
knowledge, this is the first framework that successfully generates sport news with
the participating of GAN model based on game stats. It proves the potential of
GAN model on NLP applications.



104 C. Li et al.

The rest of our paper is structured as follows: Sect. 2 describes related works;
Sect. 3 gives a detailed description of our model; Sect. 4 analyzed experiment
results and Sect. 5 summarizes this work and the future direction.

2 Related Work

Automatic Sports News Generating is a promising task that aims to generate
sports news short after each game finishes. Then readers can receive the news
quickly and saves human labor. Currently, there are not many researches on
this area. A research recently [3] attempt to generate football news from live
comments and use learning to rank method to extract most probable sentence
appeared previously to fit a new live comment. Basically, the author reduced the
problem into a ranking problem.

GAN has drawn significant attention as a new machine learning model
recently [1]. The task of GAN is to produce a generator by a minimax game.
In last few years, many variations have been invented to improve the original
GAN, such as f-GAN [15], Energy based GAN [20], info GAN [17], and WGAN
[21], which proves that GAN is a promising model.

Currently, A work that combines deep convolutional neural networks and
GAN (DCGAN) [8] has been proposed, which proves that GAN has great poten-
tial in image generating area. Inspired by DCGAN, researchers have made much
progress on image generating aspect. A model that utilize DCGAN within Lapla-
cian pyramid framework [6] has been proved that it can produce higher quality
images than original DCGAN. Meanwhile, DCGAN has been used to generate
photo-realistic natural images by mainly updating the loss function cite.

Besides image generating, NLP is another important task in machine learning
area. However, GAN is considered to be difficult to apply on NLP [1] since the
update of GAN is based on continued space, but languages are discrete.

Though application of GAN on NLP is tough, there are several attempts
on it. An effort that tries to learn words representation from documents [9] has
bypass the problem of handling natural language sentences directly. In addition,
researchers try to solve the discrete problem by modelling the generator as Rein-
forcement Learning (RL) called SeqGAN [18]. This model avoids the differentiate
problem caused by gradient policy in generator. On the other hand, the discrete
problem can be solved by mapping discrete natural languages into continuous
vector spaces as well. Combining LSTM and CNN with generated vectors to do
text generating [19], researchers successfully generated some realistic sentences.
Another work, moreover, established a model that directly researches generating
sentences from a continuous space using GAN [5], which is also a progress for
GAN on NLP.

Traditional GAN and its applications only receive noise as input and produce
output we expected in generator. We cannot decide which class to output if the
expected output contains many categories. As solution, Convolutional Genera-
tive Adversarial Networks (CGAN) [4], are designed. It adds conditions as part
of input both in generator and discriminator. Therefore, GAN can map condi-
tions with expected output, and we are able to generate more accurate output



Using GAN to Generate Sport News from Live Game Stats 105

when we feed conditions while testing. [13] is a typical application of CGAN
that takes descriptions as conditions and corresponding images as output. Then
generator can generate figures according to the descriptive words we input.

WGAN, and its refined version WGAN with gradient policy, is improved
forms of GAN that aim to solve the problem that traditional GAN is hard to
train. The author analyzed the reason why GAN usually not converge while
training, and makes some specific modifies. The modification is very successful.
WGAN even works on discrete embedding such as one-hot vectors.

In our research, we attempt to utilize WGAN in sports news generating
tasks. Due to the limited usage of GAN on NLP, we reduced the aim of WGAN
from generating a whole sentence to generate several phrases whose expression
may be different between news. This idea is applicable and reasonable. In sports
news, there are many similar sentences. Therefore, we can safely ignore these
repeated words and just aiming at the variational words, which are mostly the
judgemental words that contain mostly concerned information. Through com-
bining the output words and other constant information, such as team name and
player name, our model can generate summary sentences and player performance
sentences very similar to what will appear in a real sports news.

3 Method

In this section, we will illustrate the method to generate NBA news. There are
two models to fulfil different tasks. One is Summary Sentence Generating Model
(SSGM), and another is Player Performance Generating Model (PPGM).

3.1 Summary Sentence Generating Model (SSGM)

SSGM is designed to summarize the overall game situation. It tends to get overall
basic information (date, teams and score) as input, and output the summary
sentence for the whole match.

The summary sentences contain the most abstract but important information
in a match. The structure of summary sentence is relatively stable and simple.
However, the phrases are various according to how one team beats another. For
example, if Houston Rockets beats Dallas Mavericks with 131-102, the summary
sentence in news may likely be “Rockets in home curt whup Mavericks with
131-102”. “whup” is used here that is better than normal word “beat” so as to
show that Rockets played an excellent game. These differences among words are
often decided by news writers, or precisely, experts who can judge the expression
by experience.

In our work, we would like SSGM to learn these expressions automatically,
which will generate appropriate sentences without importing experts. Therefore,
instead of producing the whole sentence using algorithm directly, which will
be inefficient and unnecessary, we focus on generating the subjective phrases,
such as “whup” in this instance. Then, combining the phrases and other con-
stant information together into template, the SSMG finally output the generated
summary sentence.



106 C. Li et al.

To fulfil this task, we need to design a generator that can generate phrases
suitable for different situations. GAN, a powerful model that can train such a
generator through confronting with a discriminator, is very popular in recent
researches and produces impressive results. To overcome the problem that GAN
is hard to converge while training, a conditional WGAN with gradient policy is
used in SSGM.

Comparing to traditional GAN, which trains the discriminator to classify
whether an input is real or fake, WGAN uses Wasserstein distance in discrimi-
nator to measure the difference between two kinds of inputs, which ensure the
model will converge to a plausible result even for one-hot word embedding data.
In addition, gradient policy method is utilized to stable the training process so
that we can train the model without devoting energy on tuning the model for
converging.

In SSGM, the most important factor that will influence the generated phrase
is the score of each team. Therefore, a neural network is designed, with scores and
noise as input and the phrase embedding as output. In discriminator, another
neural network is designed to take scores and corresponding phrase vector as
input and output a single value that refers how likely the input phrase and
scores combination to be true.
Given:

– pg: the probability distribution of generated phrase vector, calculated from
generator function G, in SSGM, the function is represented as G(s+z), where
s is the score vector and z is the noise vector.

– pr: the probability distribution of real phrase vector.
– px̂: the probability distribution of randomly interpolation calculated by x̂ =

εxr + (1 − ε)xg, where x̂ ∼ px̂, xr ∼ pr, xg ∼ pg and ε ∼ Uniform[0, 1].

The loss function of WGAN in SSGM is:

LG = −Ex∼pg
[D(x + s)] (1)

LD = −Ex∼pr
[D(x + s)] + Ex∼pg

[D(x + s)]
+λEx∼px̂

[‖∇x[D(x + s)]‖p]2 (2)

Where LG and LD is the loss of generator and discriminator in WGAN with
gradient policy, D(x) is the function in discriminator.

While training WGAN, we try to minimize the two loss values alternatively
until it reaches the equilibrium. Then the generator is expected to produce plau-
sible result. After getting the phrases, we input them into Sentence Generator
together with constant information to generate the final summary sentences.
The constant information includes constant words include team name, score and
home or away.

The Sentence Generator in SSGM is designed to combine constant informa-
tion and generated sentences together according to some templates. For example,
the template can be:

On [Date], [Team(A)] made a [Score(A)-Score[B] [SSGM phrase] [Team(B)].



Using GAN to Generate Sport News from Live Game Stats 107

Where [Team(K)] is the name of team K. [Score(K)] is the score that got
by team K in the match, the [Date] is the date that the match happened and
[Phrase] is the phrase that generated by WGAN. Figure 1 shows the flow chart
of the SSGM.

Fig. 1. Flow chart of SSGM

In the flow chart, Generator takes team scores as input and generate score
vectors, which is called condition. Then, concatenating with noise, they form
the input for neural networks. The output of generator is phrase representation
as embeddings that try to imitate what subjective phrase that an expert would
like to employ for given scores. In discriminator, the neural network combines
the phrase vector (real or fake) and score vector together as input, then output
whether the discriminator believes the phrase is real or generated from generator.

3.2 Player Performance Generating Model (PPGM)

Unlike the overall description of match that the sentence structure is relative
stable and simple, players’ performance is more variable. For instance, there are
ten starting players and several alternates in each basketball game. However, not
all players will be shown in the news. The news writer tends to report the players
who are more eye-catching, such as star players and who acts surprisingly well in
that game. In addition, which data of one player is going to be reported (scores,
rebounds, assists, etc.) is also worth concerning.

In PPGM, as shown in Fig. 2, we considered all aspects above. The basic
structure of PPGM is also a WGAN with gradient policy. In short, the goal of
WGAN is to determine which data of a player in this match is worth reporting,
and which phrases or words should be used to describe these data.

Firstly, each player will be represented as a vector called player embedding.
Therefore, the model can learn the phrase distribution for different players with
different data. For example, if an up-and-coming youngster hit 20 scores in his
first match, we should report it as “delivered a sensational”. However, if LeBron



108 C. Li et al.

Fig. 2. Flow chart of PPGM

James (a super star in NBA) got 20 scores, it is a normal data for him, we would
more likely to use “scored” rather than “delivered a sensational”.

Furthermore, players’ performance will be represented as performance
matrix, which combines player embedding and corresponding performance data
as follow:

PMij = pyT
i × pfij (3)

where PMij the Performance Matrix of the ith player in the jth match; pyi is the
Player Vector of ith player and pfij is the Performance Vector of the ith player
in the jth match.

Next, performance matrix will be used as condition in both generator and
discriminator. The generator takes performance matrix and noise as input and
outputs word/phrase embedding for each data. These phrases describe how the
players perform in term of each data.

Additionally, there is a special embedding that represent “no report” for each
data. If the model outputs this embedding with the highest probability, it means
that this data of the player is not worth reporting in the news. Therefore, if all
data of one player are outputted as “no report”, this player’s performance will
not show in the news at all.

In discriminator, the input consists of performance matrix with real data
or generated data together. The output of discriminator decides whether these
phrases are in real news or just generated by the generator.

WGAN in PPGM is similar to that in SSGM, but with different conditions
and generator output. The generator function is modified into G(z + vT

p vs),
where vp is the player vector and vs is the score vector got by corresponding
players. Discriminator function is modified into D([x + v]Tp vs), where x is either
the output of generator or real phrase vector.



Using GAN to Generate Sport News from Live Game Stats 109

The loss function of WGAN in PPGM is:

LG = −Ex∼pg
[D(x + vT

p vs)] (4)

LD = −Ex∼pr
[D(x + vT

p vs)] + Ex∼pg
[D(x

+ vT
p vs)] + λEx∼px̂

[‖∇xD(x + vT
p vs)‖p]2 (5)

Since each player’s performance phrases are generated separately, the function
of Sentence Generator in PPGM is to generate the whole paragraph for all cor-
responding players combining some constant information. Specifically, constant
information contains all constant information such as player names, which team
they belongs to and monotonous presentation. The Sentence Generator in PPGM
is designed to combine constant information and generated sentences together
according to specific rules. Different rules map to different templates so that the
expressions are diversified and more similar to a real news. For example:

If one player got outstanding performance on two indexes such as scores and
assists, it should be reported as ([Player(i)] [PPGM phrase] points and [PPGM
phrase] assists). The connection word “and” is utilized to make sentence smooth.

As a result, the outputs of SSGM and PPGM constitute the paragraphs of
a NBA news, which is accomplished automatically.

4 Experiments

In this section, we tested the two models based on real game stats.

4.1 Dataset

The data is collected from NetEase NBA website, which is one of the most
popular NBA website in China. It contains full data in each match, including
reports and the detailed statistic data for the match and each player. For exam-
ple, the detailed statistic data and corresponding new report details provided in
supplementary material appendix A.

For example, there is a match between Cleveland Cavaliers and Oklahoma
City Thunder, the detailed statistic data is as shown in Fig. 3. The corresponding
news report is also available as shown in Fig. 4. The summary sentence is shown
in green box and players’ performance sentences are shown in red box.
The translation:

The Cavaliers scored 115-92 victory over Oklahoma City Thunder. Love scored

29 points, grabbed 11 rebounds and 4 assists, LeBron had 25 points, added 11

times Assists, 7 rebounds, 3 steals but had 5 turnovers, Jefferson got 15 points

and 6 rebounds, Smith got 15 points, Thompson got 14 points and 14 rebounds,

Mozgov got 11 points and 5 rebounds 15, rebounds and 3 assists, Westbrook gets

20 points, 11 assists and 9 rebounds, Durant finished 26 points, had 5 rebounds

and 3 assists, Westbrook had 20 points, added 11 assists and 9 rebounds, Ibaka

added 12 points.



110 C. Li et al.

The data will then be further processed for both two tasks in subsequent parts.
In the following subsections, to make non-Chinese readers easier to under-

stand the news reports, we translate them into English for illustration.

Fig. 3. Match stats

4.2 Experiment Settings and Results

In this subsection, we will describe experiment settings and analyze the results.

SSGM Settings. In SSGM, WGAN model takes scores as input, and generates
the phrases that describe how one team beat another team. We extract the
summary sentences from news reports and related data. Then we process and
organize them into form as shown in Table 1.

In this experiment, two scores are both duplicated 10 times into 10 dimen-
sionalities and normalized to guarantee that WGAN will fully use the score
information. Then the scores vector are concatenated together to form the con-
ditions. In generator, conditions are concatenated with 5 dimensionality noise
vector as the input. Meanwhile, the output phrases are embedded using one-hot
embedding method.



Using GAN to Generate Sport News from Live Game Stats 111

Fig. 4. News report (Color figure online)

In discriminator, conditions vector are concatenated the phrase vector
together to form the input, and get one value in [0, 1] to indicate whether the dis-
criminator believe the condition and phrase combination comes from real news.

After training, the generator can generate phrases given two scores. SSGM
then put it together with other information into templates. Then we can get the
summary sentence.



112 C. Li et al.

Table 1. SSGM training dataset

ID Teams Score Phrase Date

1 Boston-Los Angeles 119-113 beat 2.20

2 Miami-Oklahoma City 115-92 whup 2.22

3 Houston-San Antonio 114-117 lose by a neck 2.24

4 Golden State-Cleveland 121-118 edged out 2.28

... ... ... ... ...

SSGM Result. Given the data from NBA game in 2016-2-22, Cavaliers vs
Thunder, Table 2 lists several results generated from our approach, compared to
the news on website.

Table 2. SSGM generated result compared with real report

Score Category Sentence

115-92 Generated Cleveland Cavaliers made a 115-92 beat the Golden State
on February 22

Cleveland Cavaliers made a 115-92 whup the Golden State
on February 22

Reported Cleveland Cavaliers made a 115-92 beat the Golden State
on February 22

From the result, it should be noticed that the generated summary sentence is
amazingly similar as the real news. It is scarcely possible for people to distinguish
whether the report is generated automatically or written by sports-writers. It
shows that WGAN in SSGM learned the pattern that reports the summary
result for different score combination, without an expert getting involved.

PPGM Settings. In PPGM, situations are more complicated than SSGM.
The data is processed as shown in Table 3. First, we set each players’ vector
as length 50 with random value within [−1, 1]. Next, through statistic, only 5
kinds data are shown in the player performance sentence. They are “scores”,
“rebounds”, “assists”, “mistakes”, “first start”. Among the 5 data, the first 4
are all integers and will be normalized. On the other hand, the “first start”
data is Boolean, which 1 represent first start and 0 otherwise. Therefore, the
performance information is a vector of length 5.

For each kind of data, we employ one-hot embedding to represent correspond-
ing frequently used phrases. We embedded each data output as a vector of length
5 with the last dimension representing “no report”. Therefore, the output of gen-
erator in WGAN is a matrix of 5∗5, which phrases of all data generated at once.
The discriminator form the input as the concatenation of Performance Matrix



Using GAN to Generate Sport News from Live Game Stats 113

Table 3. PPGM training dataset

Player ID Rebound Assist Turnover Points Starter

1 11 (grabbed) 4 0 29 (scored) 1

2 7 (had) 11 (had) 5 (but had) 25 (had) 1

3 1 7 (added) 3 2 0

4 6 (got) 0 3 15 (got) 0 (sub)

5 5 (had) 3 (had) 3 26 (finished) 1

... ... ... ... ... ...

and phrase embedding matrix then output a single value representing whether
it believes the Performance Matrix and phrase embedding matrix comes from
real news.

After training, in each game, each player will be evaluated whether his perfor-
mance is worth reporting and which phrases should be reported. Finally, adding
all the results from WGAN together with corresponding name into template.
PPGM will generate the player performance sentences using the rules for all
reported players.

PPGM Result. Given the data from NBA game in 2016-2-22, Cavaliers vs
Thunder, we finally got the generated paragraph shown in Table 2.

From the results, we can see that the player performance sentences are clear
and plausible. Furthermore, the sentence generator leveraged various templates
and rules to generate the whole paragraph. It fully utilizes the input data and
prevent monotonous description for all players. This brings even better effect
than the original news.

Among all the input data, PPGM chose what kind of data to report auto-
matically. All the chosen data are prominent and worth reporting. For example,
Tristan Thompson got 14 rebounds, which is amazing in NBA match. our model
reported it as “Tristan Thompson grabbed 14 rebounds”. For another exam-
ple, Kyrie Irving only got 2 scores in the match. However, PPGM still reports
him because our model can learn that he is NBA star concerned by many fans,
based on his history performance as represented as Performance Matrix. And
the corresponding report,“Kyrie Irving performed poorly, 5 hit 1, and only got
2 scores”, gives the vivid description about his performance (Table 4).

In sum, PPGM takes all players’ data in a match and capable of deciding
which data worthy reporting and generating diverse description of players’ per-
formance.

Based on the both results of SSGM and PPGM, we are confident to extend
our model to replace this part from human writer and save the time to generate
NBA news.



114 C. Li et al.

Table 4. PPGM generated results compared with real reports

Category Result

Generated Cleveland Cavaliers blasted enemy in the game. Love and James
Combined 54 points, Thompson grabbed 14 rebounds and scored 4 of 6
shooting. Smith finished with 15 points, with 5 of 12 shooting 5-12.
Dellavedova was substituted and added 7 assists, shotted 1-3. Jefferson
was substituted and scored 15 points on 4 of 5 shooting. Irving
performed murky and only had 2 points on 1 of 5 shooting among the
playing time of 9:16. Meanwhile, Oklahoma City Thunder fails to
defend on their home curt. Durant and Westbrook combined 46 points.
Ibaka scored 12 points on 6 of 14 shootings. Adams grabbed 9
rebounds and hit 4 out of 5. Cavaliers had blossom in the game and
finished with six players in double figures. On the other hand, Thunder
lose their hit rate from behind the arc and only had 22.7%

Cleveland Cavaliers played a wonderful match. Headed by
LeBron-James scored 25 points, 11 assists, 7 rebounds, but also 5
turnovers, Love got the team’s highest 29 points and contributed 11
rebounds and 4 Assists, Tristan-Thompson grabbed 14 rebounds.
Richard-Jefferson was Substituted and performed outstanding of
having 15 points and 6 rebounds. Matthew-De La Vitoria off the bench
sent 7 assists. Kerry-Erwin started but only 2 points. Oklahoma City
Thunder fails to defend on their home court. Kevin-Durant finished a
game-high of 26 points and sent 5 assists, Russell-Westbrook almost
got three double and add 20 points, 11 assists and 9 rebounds.
Cavaliers finished with six players in double figures

Reported The Cleveland cavaliers won the game, Kevin love had 29 points and
11 rebounds, and lebron James scored 25 points, 11 assists 7 rebounds
and 3 steals, but there are 5 turnovers, Tristan Thompson grabbed 14
rebounds. JR. Smith scored 15 points. Substitute Matthew delevedo
sent out seven assists. Substitute Richard Jefferson scored 15 points.
Kerry Ervin played nine minutes and 16 s and scored 1 of 5, just 2
points. The Oklahoma city thunder team lost home, Durant had a
team-high 26 points and five rebounds and three assists, Westbrooke
had 20 points and 11 assists and 9 rebounds, Serge Ibaka had 12
points. Stephen Adams picked up nine rebounds. The Cleveland
cavaliers scored double with many people

5 Conclusion and Future Work

In this work, we propose an Automatic Sport News Generating System, which
aims to produce sport news immediately after each match is over. We utilize
WGAN combining with template to generate the summary sentences and player
performance sentences in NBA match news. This is the first work that applied
GAN on automatic sport news generation field. The system not only fulfil the
task of generating sports news based on WGAN model, but also gives new angle
of leverage GAN on NLP area.



Using GAN to Generate Sport News from Live Game Stats 115

As to future work, we will continue generating the remaining of NBA match
news. For the abstract description of the whole match part, we will train WGAN
model on sequence of data, which is a new attempt that combines GAN and
sequence model together on NLP tasks.

References

1. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems (2014)

2. Mikolov, T., et al.: Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781 (2013)

3. Zhang, J., Yao, J.-g., Wan, X.: Towards constructing sports news from live text
commentary. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), vol. 1 (2016)

4. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

5. Bowman, S.R., et al.: Generating sentences from a continuous space. arXiv preprint
arXiv:1511.06349 (2015)

6. Denton, E.L., Chintala, S., Fergus, R.: Deep generative image models using a
Laplacian pyramid of adversarial networks. In: Advances in Neural Information
Processing Systems (2015)

7. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond
mean square error. arXiv preprint arXiv:1511.05440 (2015)

8. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

9. Glover, J.: Modeling documents with generative adversarial networks. arXiv
preprint arXiv:1612.09122 (2016)

10. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144 (2016)

11. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative
adversarial network. In: CVPR, vol. 2, no. 3 (2017)

12. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 (2016)

13. Reed, S., et al.: Generative adversarial text to image synthesis. arXiv preprint
arXiv:1605.05396 (2016)

14. Salimans, T., et al.: Improved techniques for training GANs. In: Advances in Neural
Information Processing Systems (2016)

15. Nowozin, S., Cseke, B., Tomioka, R.: f-GAN: training generative neural samplers
using variational divergence minimization. In: Advances in Neural Information
Processing Systems (2016)

16. Tang, D., Qin, B., Liu, T.: Aspect level sentiment classification with deep memory
network. arXiv preprint arXiv:1605.08900 (2016)

17. Chen, X., et al.: InfoGAN: interpretable representation learning by information
maximizing generative adversarial nets. In: Advances in Neural Information Pro-
cessing Systems (2016)

18. Yu, L., et al.: SeqGAN: sequence generative adversarial nets with policy gradient.
In: AAAI (2017)

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1511.05440
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1612.09122
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1605.05396
http://arxiv.org/abs/1605.08900


116 C. Li et al.

19. Zhang, Y., Gan, Z., Carin, L.: Generating text via adversarial training. In: NIPS
Workshop on Adversarial Training, vol. 21 (2016)

20. Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network.
arXiv preprint arXiv:1609.03126 (2016)

21. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint
arXiv:1701.07875 (2017)

22. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

23. Goldberg, E., Driedger, N., Kittredge, R.I.: Using natural-language processing to
produce weather forecasts. IEEE Intell. Syst. 2, 45–53 (1994)

24. Coch, J.: System demonstration interactive generation and knowledge administra-
tion in MultiMeteo. Natural Language Generation (1998)

25. Coch, J., David, R., Magnoler, J.: Quality tests for a mail generation system. In:
IA 95. Journées internationales (1995)

26. Portet, F., et al.: Automatic generation of textual summaries from neonatal inten-
sive care data. Artif. Intell. 173(7–8), 789–816 (2009)

27. White, M., Caldwell, T.: EXEMPLARS: a practical, extensible framework for
dynamic text generation. Natural Language Generation (1998)

28. Busemann, S., Horacek, H.: Generating air quality reports from environmental
data. In: Proceedings of the DFKI Workshop on Natural Language Generation
(1997)

http://arxiv.org/abs/1609.03126
http://arxiv.org/abs/1701.07875

	Using GAN to Generate Sport News from Live Game Stats
	1 Introduction
	2 Related Work
	3 Method
	3.1 Summary Sentence Generating Model (SSGM)
	3.2 Player Performance Generating Model (PPGM)

	4 Experiments
	4.1 Dataset
	4.2 Experiment Settings and Results

	5 Conclusion and Future Work
	References




