N

N

An Instruction Set Architecture for Secure, Low-Power,
Dynamic IoT Communication
Shahzad Muzaffar, Ibrahim Elfadel

» To cite this version:

Shahzad Muzaffar, Ibrahim Elfadel. An Instruction Set Architecture for Secure, Low-Power, Dynamic
IoT Communication. 26th IFIP/IEEE International Conference on Very Large Scale Integration -
System on a Chip (VLSI-SoC), Oct 2018, Verona, Italy. pp.14-31, 10.1007/978-3-030-23425-6_2 .
hal-02321776

HAL Id: hal-02321776
https://inria.hal.science/hal-02321776
Submitted on 21 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-02321776
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Instruction Set Architecture for Secure,
Low-power, Dynamic IoT Communication

Shahzad Muzaffar and Ibrahim (Abe) M. Elfadel

Department of Electrical and Computer Engineering
Khalifa University
Masdar City, P.O. Box 54224, Abu Dhabi, UAE
{shahzad.muzaffar, ibrahim.elfadel}@ku.ac.ae

Abstract. This chapter presents an instruction set architecture (ISA)
dedicated to the rapid and efficient implementation of single-channel IoT
communication interfaces. The architecture is meant to provide a pro-
gramming interface for the implementation of signaling protocols based
on the recently introduced pulsed-index schemes. In addition to the tradi-
tional aspects of ISA design such as addressing modes, instruction types,
instruction formats, registers, interrupts, and external I/O, the ISA in-
cludes special-purpose instructions that facilitate bit stream encoding
and decoding based on the pulsed-index techniques. Verilog HDL is used
to synthesize a fully functional processor based on this ISA and pro-
vide both an FPGA implementation and a synthesised ASIC design in
GLOBALFOUNDRIES 65nm. The ASIC design confirms the low-power
features of this ISA with consumed power around 31puW and energy ef-
ficiency of less than 10pJ/bit. Finally, this chapter shows how the basic
ISA can be extended to include cryptographic features in support of
secure IoT communication.

Keywords: Dynamic Signaling, Single-Channel, Low-Power Communi-
cation, Clock and Data Recovery, Internet of Things, Domain Specific Ar-
chitecture, Pulsed-Index Communication, Instruction Set Architecture,
Secure Communication

1 Introduction

IoT nodes need to meet two conflicting requirements: high data-rate commu-
nication to support bursts of activity in sensing and communication, and low-
power to improve energy autonomy. Unfortunately, existing protocols fail to meet
these requirements simultaneously. Protocols providing high data rates, such as
WiFi, WLAN, TCP/IP, USB, etc. [1-3], are power-hungry and involve complex
controllers to handle two-way communications. On the other hand, low-power
protocols such as 1-Wire [4] and UART [5] have low data rates.

To fill up the gap and address these two requirements at once, a novel fam-
ily of pulsed signaling techniques for single-channel, high-data-rate, low-power
dynamic communication have been recently proposed under the name of Pulsed-
Index Communication (PIC) [6] [7]. The most important feature of this family of

2 Shahzad Muzaffar, Ibrahim (Abe) M. Elfadel

protocols is that they do not require any clock and data recovery (CDR). They
are also highly tolerant of clocking differences between transmitter and receiver,
and are fully adapted to the simple, low-power, area-efficient, and robust com-
munication needs of IoT devices and sensors. These techniques are reviewed in
Section 2 with their advantages and disadvantages clarified. The main issue that
this chapter addresses is to provide a flexible framework that enables the imple-
mentation of the most suitable PIC technique for a given application. The issue
of selecting and implementing a communication interface in a constrained IoT
node is a prevalent one, and its solution should contribute to the streamlining
of communication subsystem design in IoT devices.

One candidate solution is to program all the protocols on a microprocessor
and control their selection and parameters through registers. This is a stan-
dard practice that is followed for data transfer protocols such as I2C, I2S, SPI,
UART, and CAN. Another possible solution is to design ASIC for the newest
generation of the protocol and make it backward compatible with older ver-
sions as in the case of USB 1.0 through 3.0 [8]. Such methods increase silicon
area and power consumption, and do not provide any customization features.
Yet another approach is to adopt the principles of hardware-software codesign
and provide a special-purpose hardware supporting a tuned or extended Instruc-
tion Set Architecture that can be used to configure and implement the various
communication protocols of a given family without changing or re-designing the
on-chip hardware modules. An example of such approach can be found in Cisco’s
routers where the main CPU (e.g., MPC860 PowerQUICC processor from Mo-
torala/NXP) includes an on-chip Communication Processor Module (CPM) [9].
The CPM is a RISC microcontroller dedicated to several special purpose tasks
such as signal processing, communication interfaces, baud-rate generation, and
direct memory access (DMA). The work described in this chapter is inspired
with such a solution in that it proposes a flexible, fully programmable commu-
nication interface for the PIC family based on a full RISC-like ISA tailored for
the efficient and seamless implementation of the PIC protocols.

Specifically, a set of special-purpose instructions and registers along with
a compact assembly language is proposed to help perform the specific tasks
needed for the generation of pulsed signals and to give access to all the hard-
ware resources. The proposed ISA is called Pulsed-Index Communication In-
terface Architecture (PICIA) and is meant to help reduce the number of in-
structions required to implement a PIC family member without impacting the
advantageous data rates or low-power operation of the PIC family. Verilog HDL
is used to synthesize and verify a fully functional processor based on this ISA
over the Spartan-6 FPGA platform. Furthermore, an ASIC design in the GLOB-
ALFOUNDRIES 65nm process confirms the low-power operation with 31.4pW
and energy efficiency of less than 10pJ/bit.

This chapter is an expanded version of an earlier publication of ours [10] and
includes an entirely new section, Section 6, on secure IoT transmission using an
extended ISA with cryptographic instructions. Other changes include improved
figures and additional explanations that are spread throughout this chapter.

An Instruction Set Architecture for IoT Communication 3

2 Pulsed-Signaling Techniques

Pulsed-signaling techniques are based on the basic concept of transmitting binary
word attributes rather than modulated bits. The attributes are quantified, coded
as pulse counts, and transmitted as streams of pulses. The key to the success
of these techniques is the encoding step whose goal is to minimize the pulse
count. At the receiver, the decoding is based on pulse counting by detecting
the rising edge of each pulse. These techniques have the distinguished feature
that they don’t require any clock and data recovery (CDR), which significantly
contributes to their low-power and small foot-print hardware implementations.
Recently, three techniques based on this concept have been introduced, namely,
Pulsed-Index Communication (PIC) [6], Pulsed-Decimal Communication (PDC)
[7], and Pulsed-Index Communication Plus (PICplus). With slight differences,
these techniques apply an encoding scheme to a data word B to minimize the
number of ON bits, and move them to the Least-Significant-Bit (LSB) end of
the packet with the goal of lowering the number of pulses required to transmit
the data bits. The encoding process includes a segmentation step where the
data is broken into N independent segments of size [bits each (i.e. N = B/I).
To maximize data rate, these use, on each segment, an encoding combination
of bit inversion and/or segment reversion/flipping. For PIC and PICplus, this
combination is meant to reduce the number of ON bits and decrease their index
values. For PDC, the same combination is meant to reduce the number of ON
bits and decrease the decimal number represented by each segment. To facilitate
decoding, flag pulses representing the type of encoding performed are added to
each segment. Unlike PIC, the PDC segment flags of two consecutive segments
and the PICplus segment flags of four consecutive segments are combined in
one data word flag and placed in the header. The PDC further applies a third
segmentation step post-encoding whose goal is further reduce the number of
pulses per segment and, therefore, further increase the data rate.

All the pieces of information including flags, the number of indices, and the
indices themselves in the case of PIC and PICplus, or the decimal numbers of
each segment in the case of PDC, are transmitted in the form of pulse streams.
Within a given packet, segment pulse streams are separated by an inter-symbol
delay (a). The receiver counts the number of pulses for each pulse stream and
applies the decoding according to the flags received.

3 Pulsed-Index Communication Interface Architecture
(PICIA)

As described in Section 2, the PIC family members share many ideas, some of
which are used in exactly the same way and others with few changes. Their
packet formats are also quite similar. There could be a number of variations
that could be introduced in these techniques as per needs and choice. The pro-
posed PICIA can be used to generate not only these standard protocols with
tune-able respective communication parameters (i.e. segment size, inter-symbol

4 Shahzad Muzaffar, Ibrahim (Abe) M. Elfadel

delay, pulse width etc.) but it can also be used to develop other customized
communications techniques that use the same underlying idea of transmitting
information in the form of pulses. The PICIA is described in detail in the next
subsections.

Table 1. PICIA Register Set

Register| Type Organization

RO-R7 8 bit GP?#|8-bit Value

Ctrlo 8 bit SP® [[0, Mode, 3-bit SegNum, 3-bit SegSize]
Ctrll 8 bit SP |8-bit Pulse Width

LoadReg |16 bit SP |16-bit Value

2 General Purpose ” Special Purpose

= W N =

3.1 Register Set

The PICIA uses three types of registers. The first type includes a set of eight
8-bit registers, R0 through R7, which are programmer-accessible general-purpose
registers. The second type is that of Control Registers Ctrl0 and Ctrll which are
8-bit registers used to store protocol configuration parameters such as mode of
transaction (transmitter or receiver), segment number, segment size, and pulse
width in terms of a number of clock cycles. These control registers are initially
set by the programmer through specific instructions but, once set, they become
accessible only to the system. The third type is the LoadReg register, which is a
16-bit, I/O-dedicated register used to read the I/O port, set the I/O port, and
to store the updated results after an instruction is executed. Like the Control
Registers, LoadReg is a privileged register accessible only to the system. These
register types are summarized in Table 1. In the remainder of the text, the word
register will always refer to a general-purpose register.

3.2 Instruction Formats

The PICIA instructions are all 16-bit long and are of three different types. The
first type, I-Type 1, handles one operand at a time and is used in operations
such as to read/write the I/O port, set/clear the LoadReg, set various communi-
cation protocol parameters, and send/receive pulse streams. I-Type 1 is divided
into five fragments, as shown in Fig. 1. The 5-bits Opcode represents the type
of operation. Type (R/C) is used to set the type of operand (register or a con-
stant) in an instruction. Halt PC/WE is used either to halt the PC during the
transmission of pulse streams or to enable the store operation of received pulse-
count to a specified register. The bit F sets if an extra pulse should be added
to the transmitted pulse stream and/or an extra pulse should be removed from
the received pulse stream. The last 8-bits long fragment of I-Type 1 is used to
indicate a register number or an immediate constant value.

An Instruction Set Architecture for IoT Communication 5

{ 1-bit 1-bit ! 1-biti 3-bit H 3-bit { 1-bit | 1-bit!
H:H:H 4—5'4—’:4—’:4—}'

5-bit H -bi i : 8-bit i ' :

Tvpe HPC
) P —

Opcode Register Constant

, EAECEETEND

Fig. 1. PICIA Instructions Format

The second type of instruction, I-Type 2, needs two operands and is used in
operations such as updating a register with a given constant value, and jumping
to a specified label in the code depending on the validity of a condition in a
register. I-Type 2 is divided into three fragments, as shown in Fig. 1. The 5-
bits Opcode represents the type of operation. The 3-bits Register field is used
to indicate one of the general purpose registers and the 8-bits Constant field is
used to provide a constant value or a label that is present in the code.

The third type of instruction, I-Type 3, handles two or three operands si-
multaneously. I-Type 3 is used in operations such as encoding (inversion and
reversion with or without condition), combining and splitting encoding flags,
and copying register contents or some other information to a specified register
conditionally. I-Type 3 is divided into six fragments, as shown in Fig. 1. The
5-bits Opcode represents the type of operation. The 3-bits Register fields are
used to indicate one of the general purpose registers. The combinations of 1-bit
I and Co fields are used to select the source of information to be copied.

3.3 Addressing Modes

The PICIA employs three addressing modes: immediate, register, and auto-
decrement. In the immediate mode, the source is either a constant or a label
while the destination is one of the general-purpose, special-purpose, or program
counter registers. In the register mode, the register contains the value of the
operand. The auto-decrement mode is used only for jump operation where the
branch to a label is taken and a specified register decrements by one if the register
contains a non-zero number.

3.4 Interrupts

There are three interrupts in the PICIA supported processor. First, the 1/0
interrupt is generated when the data at the I/O port is available. The system
remains in a halt state until the I/O interrupt is reached and the system starts the
execution of instructions from the very start. Second, the transmitter interrupt
is used to indicate the completion of the transmission of one pulse stream. The
PICIA processor remains in a halt state, if activated, until transmitter interrupt

6 Shahzad Muzaffar, Ibrahim (Abe) M. Elfadel

is received and the execution continues from where it paused. Third, the receiver
interrupt is generated when the reception of one pulse stream completes. The
PICIA processor remains in a halt state until the receiver interrupt is received
at which time, program execution is continued.

3.5 External I/O

Three external I/O ports are supported by the PICIA processor. One of these
ports is the 16-bit data I/O port that is used to read from and write back to the
external environment. To transmit and receive the packets in the form of pulse
streams, a 1-bit signal I/O port is used. Another 1-bit data ready port is used to
source the generation of I/O interrupts and start the execution of instructions.

4 PICIA Assembly Language

Before diving into the PICIA assembly language in detail, it is necessary to
understand few relevant interpretations about the instructions and assembly
language. These interpretations are shown in Table 2. The left part of the table
shows the instruction interpretations where the values of the control bits are
indicated along with the corresponding effect or representation. Similarly, the
right part of the table does the same but for PICIA assembly language. The
PICIA instructions are listed in Table 3 along with a brief description and an
example for each. The instruction categories and types are given in Table 4.
More details about the PICIA instructions are given in the next subsections.

Table 2. PICIA Interpretation

Instruction Interpretation Assembly Interpretation
Control Bit|Value : Effect Symbol Meaning
Type (R/C) |0 : Register, 1 : Constant R Register Only
Halt PC 0 : No Halt, 1 : Halt C Constant Only
0 : Register Write Disabled . .
WE 1 : Register Write Enabled RC Register or Constant
0 : Extra Pulse Disabled .
E 1 : Extra Pulse Enabled R, Rx, Ry, Rs|Register Number
I 0 : No Indexing, 1 : Indexing||h 0 : No Halt, 1 : Halt
Co 0 : Copy Segment Disabled
1 : Copy Segment Enabled

4.1 Type 1 Instructions (I-Type 1)

These instructions are concerned with configuration and transmission control op-
erations and use only one operand. The first instruction towards this is RP, read

from port, that collects the data from the I/O port and stores it in the LoadReg.
WP, write to port, reads data from LoadReg and updates the I/O port. There
is no operand to these instructions as the system accesses the special purpose
register internally. 5SS and SSN set the segment size and the segment number
respectively in the Ctrl0 register. The operand for both of these instructions is
an immediate constant value. The operand to 5SS can be any of 0, 1, or 2 that

An Instruction Set Architecture for IoT Communication

represents a segment size of 4, 8, or 16 bits respectively.

Table 3: PICIA Assembly Language

[Instruction |Description |Example
Configuration Instructions

1 |RP Load data from Input Pins to data register. RP

9 |wp Output t.he received data from data register WP
to the Pins.

3 lgss 1?)iet:c)segment size (C = 0,1,2 for 4 bit,8 bit,16 SS9 1

4 |SSN C Select segment number (C = 0,1,2,3). SSN 2
Set Mode (C = 0,1 for Transmitter, Re-

5 |SM C ceiver). Setting RX mode clears LoadReg,|SM 0
setting TX loads input into LoadReg.

6 lsw c Set width of pulse (C = integer specifying SW 2
cycle count).

7 |SRD RC Set Receiver Inter-Symbol Delay equal to SRD RO
RC number of clock cycles.

8 INOP No operation. NOP

Encoding/Decoding Instructions

Inverse the selected segment. Rx=NOI &

9 IV Rx,Ry Ry=Flags (Rx/Ry= RO,R1,...RT). IV RORI
Inverse conditionally the selected segment if
encoding condition satisfy (ON bits >Seg.

WIVE RxRy g5, /9). Rx=NOI & Ry—Flags (Rx/Ry—| 'C RO-RI
RO,R1,...RT7).
Flip selected segment bits. Rx=NOI &

HIFL RxRy Ry Flags (Rx/Ry= RO,R1,...R7). FL RO.R1
Flip conditionally the selected segment
bits if encoding condition satisfy (Seg.

RZIFLCRXRY | plin(Seg.). Rx=NOI & Ry—Flags| C ROR1
(Rx/Ry= RO,RL,...RT7).
Invert and Flip selected segment

13|IVFL Rx,Ry |bits. Rx=NOI & Ry=Flags (Rx/Ry=|IVFL RO,R1
RO,R1,...R7).

8

Shahzad Muzaffar, Ibrahim (Abe) M. Elfadel

14

CRC R,Rs,1,Co

Copy register conditionally. R= Rs if I=0.
R= Rs, if I=1 and LoadReg [Rs]=1 and
Co=0. R=0 otherwise. R=Selected Seg-
ment, if Co=1. Rs is ignored. (R/Rs=
RO,R1,...RT). Can be used to clear the reg-
ister.

CRC R1,R2,1,1

15

CF R,Rx,Ry

Combine Flags. R={Rx[1:0], Ry[1:0]}.

CF RO,R1,R2

16

SF Rx,Ry.R

Split Flags. Rx=R[3:2], Ry=R[1:0].

SF R1,R2,R0

Transmission Control Instructions

17

SP h, E, RC

Send RC number of pulses (RC = register
number or constant value). Halt PC if h=1
(h=0,1). (Type = 1 then it’s a constant).
Send one extra pulse if E=1 (E=0,1).

SP 1,14

18

SD h, RC

Inter-Symbol delay of RC number of clock
cycles. Halt PC if h=1 (h=0,1).

SD 1,4

19

WRI WE, E, R

Wait for receiver pulse stream interrupt. PC
halts till the interrupt arrives. Remove one
extra pulse count if E=1 (E=0,1). Enable
received pulse count write to register R (R=
RO,R1,...R7) if WE=1 (WE=0,1).

WRI 1,1,R0

20

SDB C

Sets the index bits or the data bits in the
LoadReg as per the received pulse stream.
(C=0,1 for indexing and data respectively).

SDB 1

Register /Branch Update Instructions

21

WR R, C

Write constant value to a register R (R=
RO,R1,...RT).

WR RO,8

22

BNZD R, label

Branch to label and decrement R by 1 if
the specified register R contains non-zero
number. (R= RO,R1,...R7).

BNZD RO,loop

Table 4: I-Types Instructions

Instructions Catagory|I-Type
Configuration 1
Transmission Control 1
Register /Branch Update |2
Encoding/Decoding 3

Segment size information helps the system break the data word into smaller
independent segments. The operands to SSN can be the numbers 0, 1, 2, and
3. SSN is used to select the segment that is going to be processed by all the

An Instruction Set Architecture for IoT Communication 9

following instructions in the program until the segment number is changed again.
SM, set the mode, also accesses the special purpose control register Ctrl0 and
sets or clears a bit representing the mode of operation. The operand to SM can
either be 0 or 1 that represents the transmitter or receiver mode respectively.
During transmitter mode, the signal port is used to send the pulses out and,
during reception mode, the same port is used to receive the pulses from the
external world. If the receiver mode is selected, the LoadReg is automatically
cleared by the system to make it ready for reception. If the transmitter mode
is selected, the LoadReg is updated automatically with the data present on I/O
port. SW, set pulse width, sets the count of system-clock cycles for which the
pulse remains high. The operand to SW is an 8-bit integer number.

The SP, send pulses, sends a pulse stream consists of a number of consecutive
pulses equal in count specified by the operand that could either be a register or
an immediate constant number. The argument & is used to decide if the system
should halt during the transmission of a pulse stream or not. If 1, halt the
system unless the pulse stream transmission is complete, or continue with the
next instruction if 0. The argument E to SP instruction informs the system
if the pulse stream should include the transmission of an additional pulse at
the end of stream or not. This is helpful in representing the no-pulse or zero-
index condition with only one pulse as it is in the case of PIC and PICplus
transmission, unlike PDC where all the pulse streams are transmitted with an
additional pulse. If 1, include an extra pulse or send the exact number of pulses
if 0. SD is a similar instruction but with minor differences. SD, send the delay,
transmits an inter-symbol delay that is equal in length to the specified number
of system-clock cycles. All the arguments and operands work in the same way
as that of SP except that there is no choice of an extra pulse.

To set the expected number of clock cycles per inter-symbol delay during the
process of reception, the instruction SRD is used which takes either a register
number or a constant number as an operand to represent the number of clock
cycles. During a reception, the system needs to wait for the incoming pulse
stream so that the pulses can be counted to infer the sent information. To fulfil
this task, the instruction WRI, wait for receiver interrupt, is used. The system
goes into the halt state when this instruction is executed and returns back to
the normal state at the reception of receiver interrupt that is generated when
a pulse stream is received completely. The incoming pulses are counted and the
count decrements once if the argument £ to WRI is set. The count is stored
in a specified register R if the argument WE is set. Among different types of
information chunks in a received packet, a pulse streams related to data could
either represent the index number of an ON bit (as in PIC or PICplus) or
the decimal number for a segment (as in PDC or other custom techniques).
The instruction SDB, set data bits, removes this confusion by informing the
system if the received pulse count needs to be stored directly in the LoadReg
as a segment’s content (if C=1) or a bit in the LoadReg needs to be set at the
index number represented by the count (if C'=0). The last instruction in the
category of I-Type 1 is NOP, no operation, that is used when there is a need

10 Shahzad Muzaffar, Ibrahim (Abe) M. Elfadel

to wait for some operation to complete, as in the case of instructions SP and
SD, without halting the system. In this case, there should be enough number of
NOPs (PulsCount+2) to wait for the completion of a pulse stream transmission.
All or some of these NOPs can also be replaced by other instructions in order
to perform useful tasks instead of waiting for transmission.

4.2 Type 2 Instructions (I-Type 2)

I-Type 2 is the smallest set of instructions. As mentioned earlier, these instruc-
tions handle two operands at a time and are concerned with register and/or
branch update operations. One of the operands is a register and the other is an
immediate constant. One of these instructions is WR, write register, that is used
to store an immediate constant value to a specified general purpose register. The
second instruction is the jump instruction BNZD, branch and decrement if not
zero. The instruction takes two arguments, a register to check the condition and
a label to jump to. If the content of the specified register is a non-zero value,
the program counter jumps to the label and the register value decrements once.
The BNZD is helpful in writing conditional loops.

4.3 Type 3 Instructions (I-Type 3)

These instructions are concerned with encoding and decoding and use either
two or three operands, but all of these operands must be registers. The five
instructions, described next, are used in encoding the selected segment. IV, in-
vert, is used to complement the bits of the selected segment unconditionally
and the resulting new segment replaces the corresponding segment in LoadReg.
The operand register Rz stores the new number of ON bits (NOI) in the re-
sulted segment and register Ry stores the corresponding flags to represent the
encoding type, as per encoding description in PIC and PDC overview. The IVC,
invert conditionally, works the same way as IV works but only if the condition
of encoding is true. The condition, as mentioned earlier in the overview section,
is that the number of ON bits in the selected segment should be greater than
half the segment size. The Rz and Ry get updated with new NOI and Flags
respectively. The FL, flip, and FLC, flip conditionally, work exactly the same
way as IV and IVC, respectively, except for the base operation that is the bit
wise reverse/flipping instead of inversion. The condition here for FLC is to check
whether the content number of the selected segment is greater than the flipped
content number of the same segment. If the condition is true, it means the ON
bits are at the higher number of indices, hence, they represent a big decimal
number and both of these can be reduced by relocating the ON bits to the lower
index numbers. The fifth instruction that takes part in encoding is IVFL, in-
vert and flip. The IVFL works in the same way as the other aforementioned
four instructions work except it applies both the inversion and flipping together
unconditionally.

The instructions CF, combine the flags, and SF, split the flags, are used for
PDC, but can be used for any customized technique through PICIA. CF takes

An Instruction Set Architecture for IoT Communication 11

two operands, Rz and Ry, representing two flags to be combined and stores the
result in the third operand register R. The first two LSBs of both Rz and Ry, in
the same order, are combined to generate four LSBs in R. Similarly, SF splits
the combined flags in a specified register R into two separate flags and stores
these in registers Rz and Ry. The Ry takes the first two LSBs of R and Rz takes
the next two LSBs of R.

The last and the most complex instruction of PICIA is CRC, copy register
conditionally. Based on the given settings for I and Co, the instruction performs
four different copy operations, as shown in Table 5 where X is the don’t-care
and [Rs] represents the index number of LoadReg. CRC can be used for a simple
register to register copy because the instruction copies a register Rs to R if both
Co and [are cleared. If Co is cleared and I is set, the source to be copied is
decided by the bit of LoadReg located at the index number represented by the
contents of register Rs. If the LoadReg bit at index Rs is cleared, 0 is copied
to register R, or simply Rs is copied to R otherwise. This operation is helpful
in generating PIC pulse streams. Remember, PIC selects the ON bits only in
data and transmits their index numbers in the form of pulse streams. Therefore,
CRC with such a configuration helps in finding if the target bit is ON or not. If
the bit is ON, the index number of it needs to be transmitted that is present in
register Rs and that is why it is copied to R. If the bit is OFF, nothing is there
to transmit and that is why 0 is copied to register R. Hence, the index numbers
of the ON bits can be transmitted in a loop. If Co is set, I becomes don’t care
and the contents of the selected segment are copied to register R. This is helpful
in generating PDC pulse streams as, unlike PIC, it transmits the contents of the
sub-segments in the form of pulse streams. Hence using such a configuration for
CRC, all segments of the data word can be selected and transmitted one-by-one
in a loop. All the configurations of CRC' instruction can be used to generate any
other customized transmission techniques based on the idea of transmitting the
information in the form of pulse streams.

Table 5. CRC INSTRUCTION FUNCTIONALITY

Co|I |LoadReg[Rs]|Description
0|0 X R=Rs
0 R=0
Ol] R=Rs
11X X R==Selected Segment

5 Experimental Verification and Results

Verilog HDL is used to describe a fully functional processor based on the pro-
posed ISA and a full experimental setup is implemented on the Xilinx Spartan-
6 FPGA platform. The prototype platform is used to verify the functionality

12 Shahzad Muzaffar, Ibrahim (Abe) M. Elfadel

1500

1000

500

No. of Instructions

0 — [
PIC PDC PIC Plus
[PICIA Instructions 1 MSP432X Instructions

Fig. 2. PIC Family Implementation: PICIA vs. MSP432x

and performance of proposed PICIA. Extensive simulations and real-time hard-
ware verification are performed to verify the results. A clock rate of 25 MHz is
used for PICIA testing system. In the experimental flow, the PICIA processor’s
transmitter sends the 16-bit data starting at 0 with an increment of 1 at each
transmission. The PICIA processor’s receiver resends the same data back. The
returned and original data words are compared to verify the complete round-trip
chain.

In another experiment, the software aspects of two implementations are com-
pared. In one implementation, the PIC family member techniques are developed
for TT’s MSP432X processor family. The reason for choosing the MSP432X in our
experiments is that it is an ultra low-power RISC processor, and so it provides
an appropriate off-the-shelf choice for comparing the PIC assembly programs
using our PICIA processor vs. those of MSP432X. The second implementation
used PICIA assembly language to develop the same techniques to run on the
implemented processor. Both implementations use a 25MHz clock. The num-
ber of instructions required to implement these techniques using MSP432X is
approximately 1300 to 1400 on average whereas PICIA needs only 50 to 100
instructions. This is a notable reduction by a factor of 13 to 28, approximately.
The data rates offered by the MSP432X implementation are also reduced sig-
nificantly, approximately by a factor of 100. On the other hand, the data rates
are preserved by the implementation of communication techniques using PICIA.
The software implementation comparison is shown in Table 6 and Fig. 2.

An example showing how PICIA reduces the number of instructions is illus-
trated in Fig. 3. At the left side of the figure, an encoding example implemented
in C for PDC is presented. If the encoding is implemented using a RISC ISA,
around 150 instructions would be required. On the other hand, if the same en-
coding is implemented using PICIA, only 15 instructions are required. A sample
pseudo code in Fig. 3 highlights the flow of the program and the involved PICIA
instructions.

An Instruction Set Architecture for IoT Communication 13

/* Segmentation */

seg0 = TxData & SEG_MASK;

segl = (TxData >> ©) & SEG_MASK;

/* Encoding */

segl = PDC_Encode (3egl,) ;

segl = PDC_Encode(segl, 1);

/* Combine Flags */

CFlags = ({Flagsl << 2) & 0x0C) | Flags0;
/* Sub-Segmentation */

subSegl = segl & SUB_SEG_MASK;
subSegl = (segl >> 4) & SUB SEG MASK;
subSeg2 = segl & SUB_SEG MASK;
subSeg3 = (segl >> {) & SUB_SEG _MASK;

byte PDC_Encode (byte SegData, byte segNo) (
byte countOfOnes =
byte SegDataFlippe

Il =

byte Flags = 0x00;
countOfOnes = ((SegData >> 7) & 1} + ((SegData >> ©¢) & 1)
+ ((SegData »> 5) & 1) + ((SegData >> 4) & 1)
+ ((SegData >>) &) + ((SegData >>) & 1)
+ ((SegData >> 1) &) + (SegData & 1):
if (countOfOnes > ON_BITS_LIMIT} ({ I_ ________________ -
Seghata = ~Ssghata; 1 “150 RISC Instructions !
Flags = (0x=02; |__________________|

} e
SegDataFlipped = reverse (SegData): I 15 PICIA Instructions

if (SegDataFlipped < SegData) { 11- SSS: Select Segment Size = 4
Seghata = SegDataFlipped;

-
1
1
1
Flags = Flags | 0x01; =2—55N: Select Segment Number 0 I
} 1 3- IVC: invert conditionally SegO I
if == 3 e
" ‘;‘;ggz{) — Fiaés; =¢ FLC: flip conditionally Seg[:'l I
} else { 15-13: Repeat 2-to-4 steps 3 times |
: Flagsl = Flags; iforSeg1,2, &3 I
return SegData; =14— CF: Combine Flags of Seg 0 & 1 I
} I 15- CF: Combine Flags of Seg 2 &3 1
char reverse (char b) { B
b= (b & 0xr0) »>» 4 | (b & 020F) <<
b= (b & 1xCC) >> | (b & 0x20) << 2;
b= (b & 0:02) > | | (b & 02505) << 1;

return b;

Fig. 3. PICIA Code Reduction Example

We have also synthesized the PICIA processor system using GLOBALFOUN-
DRIES 65nm technology and estimated that PICIA hardware consumes around
31.14puW with a gate count of about 4700 gates. The power consumption results
are promising as they remain well within the power budget of a full-hardware im-
plementation of stand-alone pulsed-signaling techniques. Additionally, the con-
sumption of hardware resources is comparable, data rates are preserved and the

14 Shahzad Muzaffar, Ibrahim (Abe) M. Elfadel

Table 6. RESULTS

Implementation
PICIA [Stand-alone
Software Implementation Comparison
Avg. No. Of Instructions| 50-100 | 1300-1400
Avg. Data Rate (Mbps) |~4.1-7.1| ~0.041-0.071
Hardware Synthesis Comparison

Power (uW) ~31.14 | =19-26.6
Avg. E, (pJ/bit) ~4.2-7.6| =2.7-6.5
Area (gate count) ~4700 | ~2100-2400

required number of instructions is reduced. Moreover, PICIA offers a customiz-
able solution. The PICIA solution differs in that it offers a fully programmable
communication interface that is specifically geared to the realization of pulsed-
transmission techniques.

6 Securing PICIA

This section presents a possible extension of the PICIA to support of secure
PIC communication [11]. An advantage of the proposed extension is that it does
not require any modification in the PICIA instruction format as it employs the
very same instruction types of Section 4 to add instructions dedicated to crypto-
graphic functions. The security layer extension of PICIA offers a programmable
environment to select not only a suitable encryption algorithm but also to choose
among various execution options of the selected algorithm with the goal of trad-
ing off transmission security with data rate. Specifically, the PICIA security layer
has the following features:

1. Support of multiple encryption algorithms such as simple XOR, MA5/1[11]
and AES.

2. Encryption gating in case the crypto function is not needed.

3. Configurable encryption hardware to tune the number of clock cycles used in
data encryption. A tradeoff between the number of crypto clock cycles and
the required crypto hardware resources is implemented through the iterative
use of a smaller crypto unit. In such case, the unused crypto hardware units
are gated.

In the following subsections, the security features of the extended PICIA
architecture are highlighted.

6.1 Extended Register Set

Two new registers are added to the PICIA register set in support of the security
layer extension, as shown in Table 7. The first register is the Control Register
Ctrl2 which is an 8-bit register used to store configuration parameters of the

An Instruction Set Architecture for IoT Communication 15

Table 7. Security Layer Registers in Addition to the Regular Registers of Table 1

. ama [Enable SLP, 3-bit Enc.® Algorithm
5|Ctrl2 8 bit SP 4-bit Enc. Speed]
. . 256-bit Initial Key
6|EncIniKey|16x16-bit SP Array of sixteen 16-bit registers

2-Special Purpose P Security Layer ©Encryption

security layer such as enabling the security layer, selection of the encryption
algorithm, and the speed of encryption in terms of number of clock cycles. The
programmer initially sets the control register through a specific instruction but,
once set, it becomes accessible only to the system. The second register is the
256-bit EncIniKey register, organized as an array of sixteen 16-bit registers, and
used to store the initial encryption key. Like the Control Register, EncIniKey is
a privileged register accessible only to the system.

6.2 Extended Instruction Set

Three new instructions are added to the PICIA assembly language in support
of the security layer. They are shown in Table 8. These instructions deal with
the configuration and control of the security layer. The first instruction is ESL,
enable security layer, which activates the security layer and updates the Ctri2
register. The operand En is a one-bit modifier whose ZERO value signifies nor-
mal PIC transmission without encryption. Its ONFE value enables encryption
ahead of transmission. The second ESL operand, Alg, is a 3-bit operand that
selects the encryption algorithm that should be used. There can be a maximum
of eight hardware blocks in the PICIA processor system, each representing a par-
ticular encryption algorithm. In our current implementation, an Alg of 0 selects
a simple XOR operation, while a value of 1 selects MA5/1, a modified, PIC-
compatible version of the symmetric A5/1 encryption algorithm [11]. The third
ESL operand, ES, is used to set the speed of the encryption process in terms of
the number of clock cycles. This instruction assumes that the encryption tech-
niques implemented within the PICIA processor support changing the number of
clock cycles used to generate a full encrypted data word. For example, if MA5/1
is selected to use one clock cycle, the full encryption hardware would be utilized.
If the same algorithm is chosen to use four clock cycles, then one-fourth of the
hardware would be used, and the rest would be gated to save power. The ES
operand takes an unsigned integer value in the range of 0 to 15. The number
of encryption clock cycles is calculated as ne = 29, Through this operand, a
trade-off between crypto latency and power can be easily programmed into the
configuration of the security layer.

As described earlier, the length of the key register EnclniKey is 256 bits.
The same register can also be used for initializing shorter keys, e.g, the 128-bit
initial key of MA5/1. There is therefore a need for introducing instructions for
key-length setting and EncIniKey register initialization. Instructions LPI, lock

16 Shahzad Muzaffar, Ibrahim (Abe) M. Elfadel

Table 8. Security Layer Instructions in Addition to those of Table 3

Instruction [Description |[Example

Security Layer Instructions

Enable security layer. Enable if En=1, dis-

able if En=0. Alg selects encryption algorithm

(0:XOR, 1:MA5/1,...7:OtherAlgo7). ES sets

encryption speed in terms of number of clock

cycles/encryption-iteration. (Number of clock

cycles (ng) = 275,

Lock previously executed instruction. Unless

unlocked, all the next instructions are consid-

ered as 16-bit constant values for the locked

instruction.

25|UPI Unlock the locked instruction. UPI
Mapping

Security layer instructions are mapped to I-Type 1

23|ESL En,Alg,ES ESL 1,0,1

24|LPI LPI

previous instruction, and UPI, unlock previous instruction, are introduced for
that very purpose. LPI locks the previously executed instruction in the control
unit while keeping all the generated control signals active unless unlocked using
UPI. In other words, these two instructions define the start and end of the user’s
key section in the assembly program and must follow the ESL instruction. All the
16-bit binary numbers between these two instructions are considered segments of
the full initial key. These segments are stored in the EncIniKey register using an
internal 4-bit offset register. The offset register defines the row index of a 16x16
array version of the EncIniKey register. The offset register is cleared when the
LPI instruction is executed and is incremented when a 16-bit segment is stored
successfully. An example of EnclniKey initialization is shown in Table 9, where
the current offset represents the EnclniKey offset value before the execution of
a given instruction and the updated offset represents the EncIniKey offset value
after its execution.

6.3 Instruction Format

There is no change to the PICIA instructions format given in Fig. 1 as a result of
adding of the crypto instructions. All the new assembly language instructions, de-
scribed in previous subsections, are of the I-Type 1 instruction format. As shown
in Fig. 4, the only change we need to account for is in terms of operand values.
In particular, the [Alg, ES] operands are added to the field “Register/Constant”
and the En operand, which controls the enabling of the secirity layer, is added
to “E” field. The instruction opcode directs the instruction decoder to activate
the control signals as per the issued assembly language command.

An Instruction Set Architecture for IoT Communication

Table 9. Key Initialization Examples

1

7

. . . Current|Updated
16-bit Key|64-bit Key|256-bit Key Offset Offset
ESL 1,1,0 |ESL 1,1,0 |ESL 1,1,0 8 9
LPI LPI LPI 0 0
0xF'192 0xF192 0xF192 0 1
UPI 0x11AB 0x11AB 1 2
0xA9F6 0xA9F6 2 3
0x3313 0x3313 3 4
vrPr ..
0Ox46F4 15 0
UPI 15 0
15 0
i 5-bit _ i 1-bit } 1-bit } 1-bit | 8-bit i
D " RET e %
Opcode Register/Constant/[Alg,ES]

Fig. 4. Additional operand values in the PICIA I-Type 1 Instructions

7 Conclusions

The Pulsed-Index Communication Interface Architecture (PICIA) is a RISC-
style special purpose ISA for single-channel, low-power, high data rate, dynamic,
and robust communication based on pulsed-signaling protocols. It is designed
to facilitate the efficient generation of compact assembly code that is specific
to such communication interfaces. This hardware/software co-design capability
can be used to embed not only an existing PIC family member but also any
custom nonstandard PIC protocol without changing the underlying hardware
while greatly reducing the number of required instructions. Furthermore, such
communication interface implementation will result in minimal to no impact on
the data rates, power consumption, or the reliability of the protocols. The PICTA
processor has been synthesized in GLOBALFUONDRIES 65nm technology and
has been found to consume only 31.14uW, which translates into an energy effi-
ciency of less than 10pJ per transmitted bit. To support secure communication,
the basic PICIA has been extended to provide a programmable environment for
selecting a suitable encryption algorithm and controlling its latency at execution.
PICIA’s micro-architecture and the optimized hardware blocks that compactly
implement its RISC-style ISA are the subject of a separate publication.

18

Shahzad Muzaffar, Ibrahim (Abe) M. Elfadel

Acknowledgments

This work has been supported by the Semiconductor Research Corporation
(SRC) under the Abu Dhabi SRC Center of Excellence on Energy-Efficient Elec-
tronic Systems (ACE?S), Contract 2013 HJ2440, with customized funding from
the Mubadala Development Company, Abu Dhabi, UAE.

References

1.

10.

11.

S. Dayu, X. Huaiyu, S. Ruidan, and Y. Zhiqiang, “A Geo-related IoT Applications
Platform based on Google Map,” 7th International Conference on e-Business En-
gineering (ICEBE), pp. 380-384, Shanghai, China, November 2010.

. J. Byun, S. H. Kim, and D. Kim, “Lilliput: Ontology-based platform for IoT social

networks,” IEFEE International Conference on Services Computing, pp. 139146,
Anchorage, AK, USA, June-July 2014.

. Jenq Muh Hsu and Chin Yo Chen. “A Sensor Information Gateway Based on Thing

Interaction in IoT-IMS Communication Platform,” 10th International Conference
on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP),
pages 835-838, Kitakyushu, Japan, August 2014.

. MAXIM, OneWireViewer User’s Guide, Version 1.4, 2009.
. C. dos Reis Filho, E. da Silva, E. de L. Azevedo, J. Seminario, and L. Dibb,

“Monolithic data circuit-terminating unit (DCU) for a one-wire vehicle network,”
Proceedings of the 24th European Solid-State Circuits Conference (ESSCIRC ’98),
pp. 228-231, Hague, Netherlands, September 1998.

. S. Muzaffar, A. Shabra, J. Yoo, and I. M. Elfadel, “A Pulsed-Index Technique for

Single-Channel, LowPower, Dynamic Signaling,” Design, Automation and Test In
Europe (DATE’15), pp. 1485-1490, Grenoble, France, March 2015.

. S. Muzaffar, and I. M. Elfadel, “A Pulsed Decimal Technique for Single-channel,

Dynamic Signaling for IoT Applications,” 25th IFIP/IEEE International Confer-
ence on Very Large Scale Integration (VLSI-SoC 2017), pp. 1-6, Abu Dhabi, UAE,
October 2017.

. R. Teja, B. R. Jammu, M. Adimulam, and M. Ayi, “VLSI implementation of

LTSSM,” International conference of Electronics, Communication and Aerospace
Technology (ICECA 2017), pp. 129-134, Coimbatore, India, April 2017.

. linux-mips.org, “Cisco Systems Routers,” 2012. [Online]. Available:

https://www.linux-mips.org/wiki/Cisco.

S. Muzaffar, and I. M. Elfadel, “An Instruction Set Architecture for Low-power,
Dynamic IoT Communication,” 26th IFIP/IEEFE International Conference on Very
Large Scale Integration (VLSI-SoC 2018), Verona, Italy, October 2018. To appear.
S. Muzaffar, O. T. Waheed, Z. Aung, and I. M. Elfadel, “Single-clock-cycle, Multi-
layer Encryption Algorithm for Single-channel IoT Communications,” IEEE Con-
ference on Dependable and Secure Computing (DSC 2017), pp. 153-158, Taipei,
Taiwan, August 2017.

