Skip to main content

Tabular and Graphic Resources in Quantitative Spectroscopy

  • Conference paper
  • First Online:
Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2018)

Abstract

An approach to forming applied ontologies in subject domains in which data are presented in various forms of tables and scientific graphics is proposed. A description of the sources of data and information presented in this form is given. Using quantitative spectroscopy as an example, an approach to forming semantic annotations characterizing these sources is demonstrated. The major types of the sources are described. For scientific graphics, an approach to solving the problem of reducing and systematizing the graphic resources to search for plots in the subject domain is described. A partition into groups of functions used in the plots that are not interrelated with each other is constructed to define different spectral functions to be equivalent. The metrics of three applied ontologies of spectroscopy used in comparing data collections are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 28–37 (2001)

    Article  Google Scholar 

  2. Kalinichenko, L., et al.: New Data access challenges for data intensive research in Russia. In: CEUR Workshop Proceedings, vol. 1536, pp. 215–237 (2015)

    Google Scholar 

  3. Csaszar, A., Furtenbacher, T., Árendás, P.: Small molecules - big data. J. Phys. Chem. A 120(45), 8949–8969 (2016). https://doi.org/10.1021/acs.jpca.6b02293

    Article  Google Scholar 

  4. Lavrentyev, N.A., Makogon, M.M., Fazliev, A.Z.: Comparison of the HITRAN and GEISA spectral databases taking into account the restriction on publication of spectral data. Atmos. Oceanic Opt. 24(5), 436–451 (2011)

    Article  Google Scholar 

  5. Fazliev, A., Privezentsev, A., Tsarkov, D., Tennyson, J.: Ontology-based content trust support of expert information resources in quantitative spectroscopy. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2013. CCIS, vol. 394, pp. 15–28. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41360-5_2

    Chapter  Google Scholar 

  6. Voronina, S.S., Privezentsev, A.I., Tsarkov, D.V., Fazliev, A.Z.: An ontological description of states and transitions in quantitative spectroscopy. In: Proceedings of SPIE XX-th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, vol. 9292, p. 92920C (2014)

    Google Scholar 

  7. Lavrentiev, N.A., Rodimova, O.B., Fazliev, A.Z.: Systematization of graphically plotted published spectral functions of weakly bound water complexes. In: Matvienko, G.G., Romanovski, O.A. (eds.) Proceedings of the SPIE of 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, vol. 10035, p. 100350C (2016). https://doi.org/10.1117/12.2249159

  8. Tennyson, J., Yurchenko, S.N.: Data structures for ExoMol: molecular line lists for exoplanet and other atmospheres. Mon. Not. R. Astron. Soc. 425, 21–33 (2012). https://doi.org/10.1111/j.1365-2966.2012.21440.x

    Article  Google Scholar 

  9. Tennyson, J., et al.: A database of water transitions from experiment and theory (IUPAC Technical Report). Pure Appl. Chem. 86(1), 71–83 (2014). https://doi.org/10.1515/pac-2014-5012

    Article  Google Scholar 

  10. Keller-Rudek, H., Moortgat, G.K., Sander, R., Sörensen, R.: The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest. Earth Syst. Sci. Data 5, 365–373 (2013). https://doi.org/10.5281/zenodo.6951

    Article  Google Scholar 

  11. Lavrentiev, N.A., Privezentsev, A.I., Fazliev, A.Z.: Systematization of tabular and graphical resources in quantitative spectroscopy. In: Kalinichenko, L., Manolopoulos, Y., Stupnikov, S., Skvortsov, N., Sukhomlin, V. (eds.) Selected Papers of the XX International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2018). CEUR Workshop Proceedings, vol. 2277, pp. 25–32 (2018)

    Google Scholar 

  12. Akhlyostin, A., et al.: The current status of the W@DIS information system. In: Matvienko, G.G., Romanovski, O.A. (eds.) 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. Proceedings of SPIE, vol. 10035, p. 100350D (2016). https://doi.org/10.1117/12.2249235

  13. Rodimova, O.B.: Continuum water vapor absorption in the 4000–8000 cm−1 region. In: 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics. Proceedings of SPIE, vol. 9680, p. 968002 (2015). https://doi.org/10.1117/12.2205332

  14. Oparin, D.V., Filippov, N.N., Grigoriev, I.M., Kouzov, A.P.: Effect of stable and metastable dimers on collision-induced rototranslational spectra: carbon dioxide – rare gas mixtures. J. Quant. Spectrosc. Radiat. Transfer 196, 87–93 (2017). https://doi.org/10.1016/j.jqsrt.2017.04.002

    Article  Google Scholar 

  15. Jacquinet-Husson, N., et al.: The 2015 edition of the GEISA spectroscopic database. J. Mol. Spectrosc. 327, 31–72 (2016). https://doi.org/10.1016/j.jms.2016.06.007

    Article  Google Scholar 

  16. Richard, C., et al.: New section of the HITRAN database: collision-induced absorption (CIA). J. Quant. Spectrosc. Radiat. Transfer 113(11), 1276–1285 (2012). https://doi.org/10.1016/j.jqsrt.2011.11.004

    Article  Google Scholar 

  17. Goldenstein, C.S., Miller, V.A., Spearrin, R.M., Strand, C.L.: SpectraPlot.com: integrated spectroscopic modeling of atomic and molecular gases. J. Quant. Spectrosc. Radiat. Transfer 200, 249–257 (2017). https://doi.org/10.1016/j.jqsrt.2017.06.007

    Article  Google Scholar 

  18. Richard, C., Dubernet, M.-L., Moreau, N., Boudon, V.: Spectroscopic databases for the VAMDC portal: new tools and improvements. In: 73rd International Symposium on Molecular Spectroscopy (2018). https://doi.org/10.15278/isms.2018.tf01

  19. Kozodoyev, A.V., Kozodoyeva, E.M.: Extensible module “unary operations” in the information system “molecular spectroscopy”. Vestnik NSU Ser. Inf. Technol. 13(1), 46–54 (2015). (in Russian)

    Google Scholar 

  20. Kozodoev, A.V., Kozodoeva, E.M.: The binary operations in the information system “molecular spectroscopy”. Vestnik NSU Ser. Inf. Technol. 16(2), 70–77 (2018). https://doi.org/10.25205/1818-7900-2018-16-2-70-77. (in Russian)

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Russian Foundation for Basic Research (grant no. 07-13-0411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Z. Fazliev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lavrentiev, N.A., Privezentsev, A.I., Fazliev, A.Z. (2019). Tabular and Graphic Resources in Quantitative Spectroscopy. In: Manolopoulos, Y., Stupnikov, S. (eds) Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2018. Communications in Computer and Information Science, vol 1003. Springer, Cham. https://doi.org/10.1007/978-3-030-23584-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23584-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23583-3

  • Online ISBN: 978-3-030-23584-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics