Skip to main content

A Simple Extension to Finite Tree Automata for Defining Sets of Labeled, Connected Graphs

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11601))

Included in the following conference series:

  • 456 Accesses

Abstract

This paper introduces spanning tree automata (ST automata) usable for defining sets of labeled, connected graphs. The automata are simply obtained by extending ordinary top-down finite tree automata for labeled, ordered trees. It is shown that ST automata can define any finite set of labeled, connected graphs, and also some subclasses of infinite sets of graphs that can represent the structure of chemical molecules. Although the membership problem for ST automata is NP-complete, an efficient software was developed which supports a practical use of ST automata in chemoinformatics as well as in other fields.

A. Fujiyoshi—Supported by JSPS KAKENHI Grant Number JP18H01036.

D. Průša—Supported by the Czech Science Foundation grant 19-21198S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015). https://doi.org/10.1016/j.ic.2014.12.008

    Article  MathSciNet  MATH  Google Scholar 

  2. Brainerd, W.S.: Tree generating regular systems. Inf. Control 14(2), 217–231 (1969). https://doi.org/10.1016/S0019-9958(69)90065-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Brown, N.: Chemoinformatics-an introduction for computer scientists. ACM Comput. Surv. 41(2), 8:1–8:38 (2009). https://doi.org/10.1145/1459352.1459353

    Article  Google Scholar 

  4. Comon, H., et al.: Tree automata techniques and applications (2007). http://tata.gforge.inria.fr/. Accessed 12 Oct 2007

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009). http://mitpress.mit.edu/books/introduction-algorithms

    MATH  Google Scholar 

  6. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach, Encyclopedia of Mathematics and its Applications, vol. 138. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  7. Fujiyoshi, A.: A practical algorithm for the uniform membership problem of labeled multidigraphs of tree-width 2 for spanning tree automata. Int. J. Found. Comput. Sci. 28(5), 563–582 (2017). https://doi.org/10.1142/S012905411740007X

    Article  MathSciNet  MATH  Google Scholar 

  8. Fujiyoshi, A., Kasai, T.: Spinal-formed context-free tree grammars. Theory Comput. Syst. 33(1), 59–83 (2000). https://doi.org/10.1007/s002249910004

    Article  MathSciNet  MATH  Google Scholar 

  9. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theoret. Comput. Sci. 1(3), 237–267 (1976). https://doi.org/10.1016/0304-3975(76)90059-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  11. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton University Press, Princeton (1951)

    Google Scholar 

  12. PACE 2018. https://pacechallenge.org/2018/steiner-tree/

  13. Rounds, W.C.: Mapping and grammars on trees. Math. Syst. Theory 4(3), 257–287 (1970). https://doi.org/10.1007/BF01695769

    Article  MathSciNet  MATH  Google Scholar 

  14. Rozenberg, G., Ehrig, H., Engels, G., Kreowski, H., Montanari, U. (eds.): Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1–3. World Scientific (1997–1999)

    Google Scholar 

  15. Sibley, J.F.: Too broad generic disclosures: a problem for all. J. Chem. Inf. Comput. Sci. 31(1), 5–9 (1991). https://doi.org/10.1021/ci00001a002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Průša .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fujiyoshi, A., Průša, D. (2019). A Simple Extension to Finite Tree Automata for Defining Sets of Labeled, Connected Graphs. In: Hospodár, M., Jirásková, G. (eds) Implementation and Application of Automata. CIAA 2019. Lecture Notes in Computer Science(), vol 11601. Springer, Cham. https://doi.org/10.1007/978-3-030-23679-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23679-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23678-6

  • Online ISBN: 978-3-030-23679-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics