Abstract
This paper introduces spanning tree automata (ST automata) usable for defining sets of labeled, connected graphs. The automata are simply obtained by extending ordinary top-down finite tree automata for labeled, ordered trees. It is shown that ST automata can define any finite set of labeled, connected graphs, and also some subclasses of infinite sets of graphs that can represent the structure of chemical molecules. Although the membership problem for ST automata is NP-complete, an efficient software was developed which supports a practical use of ST automata in chemoinformatics as well as in other fields.
A. Fujiyoshi—Supported by JSPS KAKENHI Grant Number JP18H01036.
D. Průša—Supported by the Czech Science Foundation grant 19-21198S.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015). https://doi.org/10.1016/j.ic.2014.12.008
Brainerd, W.S.: Tree generating regular systems. Inf. Control 14(2), 217–231 (1969). https://doi.org/10.1016/S0019-9958(69)90065-5
Brown, N.: Chemoinformatics-an introduction for computer scientists. ACM Comput. Surv. 41(2), 8:1–8:38 (2009). https://doi.org/10.1145/1459352.1459353
Comon, H., et al.: Tree automata techniques and applications (2007). http://tata.gforge.inria.fr/. Accessed 12 Oct 2007
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009). http://mitpress.mit.edu/books/introduction-algorithms
Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach, Encyclopedia of Mathematics and its Applications, vol. 138. Cambridge University Press, Cambridge (2012)
Fujiyoshi, A.: A practical algorithm for the uniform membership problem of labeled multidigraphs of tree-width 2 for spanning tree automata. Int. J. Found. Comput. Sci. 28(5), 563–582 (2017). https://doi.org/10.1142/S012905411740007X
Fujiyoshi, A., Kasai, T.: Spinal-formed context-free tree grammars. Theory Comput. Syst. 33(1), 59–83 (2000). https://doi.org/10.1007/s002249910004
Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theoret. Comput. Sci. 1(3), 237–267 (1976). https://doi.org/10.1016/0304-3975(76)90059-1
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)
Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton University Press, Princeton (1951)
PACE 2018. https://pacechallenge.org/2018/steiner-tree/
Rounds, W.C.: Mapping and grammars on trees. Math. Syst. Theory 4(3), 257–287 (1970). https://doi.org/10.1007/BF01695769
Rozenberg, G., Ehrig, H., Engels, G., Kreowski, H., Montanari, U. (eds.): Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1–3. World Scientific (1997–1999)
Sibley, J.F.: Too broad generic disclosures: a problem for all. J. Chem. Inf. Comput. Sci. 31(1), 5–9 (1991). https://doi.org/10.1021/ci00001a002
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Fujiyoshi, A., Průša, D. (2019). A Simple Extension to Finite Tree Automata for Defining Sets of Labeled, Connected Graphs. In: Hospodár, M., Jirásková, G. (eds) Implementation and Application of Automata. CIAA 2019. Lecture Notes in Computer Science(), vol 11601. Springer, Cham. https://doi.org/10.1007/978-3-030-23679-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-23679-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23678-6
Online ISBN: 978-3-030-23679-3
eBook Packages: Computer ScienceComputer Science (R0)