Abstract
This paper presents \(\mathsf {CONCRETE}\) (\(Commit-Encrypt-Send-the-Key\)) a new Authenticated Encryption mode that offers \(\mathsf {CIML2}\) security, that is, ciphertext integrity in the presence of nonce misuse and side-channel leakages in both encryption and decryption.
\(\mathsf {CONCRETE}\) improves on a recent line of works aiming at leveled implementations, which mix a strongly protected and energy demanding implementation of a single component, and other weakly protected and much cheaper components. Here, these components all implement a tweakable block cipher \(\mathsf {TBC}\).
\(\mathsf {CONCRETE}\) requires the use of the strongly protected \(\mathsf {TBC}\) only once while supporting the leakage of the full state of the weakly protected components – it achieves \(\mathsf {CIML2}\) security in the so-called unbounded leakage model.
All previous works need to use the strongly protected implementation at least twice. As a result, for short messages whose encryption and decryption energy costs are dominated by the strongly protected component, we halve the cost of a leakage-resilient implementation. \(\mathsf {CONCRETE}\) additionally provides security when unverified plaintexts are released, and confidentiality in the presence of simulatable leakages in encryption and decryption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
If we had checked \(k_0\) and put it into the ciphertext, i.e., \(c_0=k_0\), we would have obtained a better \(\mathsf {CIML2}\) bound, but no \(\mathsf {AE}\) security.
- 2.
Observe that in the \(\mathsf {AE}\) security definition, there is no more the final decryption query granted in the \(\mathsf {CIML2}\) security game.
References
Albrecht, M.R., Paterson, K.G.: Lucky Microseconds: A Timing Attack on Amazon’s s2n Implementation of TLS. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 622–643. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_24
Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How to securely release unverified plaintext in authenticated encryption. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 105–125. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_6
Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robustness with minimal modifications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_1
Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in the face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 693–723. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_24
Barwell, G., Page, D., Stam, M.: Rogue decryption failures: reconciling AE robustness notions. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 94–111. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27239-9_6
Bellare, M.: Symmetric ecryption revised. Technical report (2018). https://spotniq.files.wordpress.com/2018/07/spotniq18-se-revisited.pdf
Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055718
Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_41
Bellizia, D., Berti, F., Bronchain, O., Cassiers, G., Duval, S., Guo, C., Leander, G., Leurent, G., Levi, I., Momin, C., Pereira, O., Peters, T., Standaert, F.-X., Wiemer, F.: Spook: sponge-based leakage-resilient authenticated encryption with a masked tweakable block cipher (2019). https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Spook-spec.pdf
Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: TEDT, a leakage-resilient AEAD mode for high (physical) security applications. Cryptology ePrint Archive, Report 2019/137 (2019)
Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.-X.: Ciphertext integrity with misuse and leakage: definition and efficient constructions with symmetric primitives. In: AsiaCCS 2018, pp. 37–50 (2018)
Berti, F., Pereira, O., Peters, T.: Reconsidering generic composition: the tag-then-encrypt case. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 70–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9_4
Berti, F., Pereira, O., Peters, T., Standaert, F.-X.: On leakage-resilient authenticated encryption with decryption leakages. IACR Transactions on Symmetric Cryptology 2017(3), pp. 271–293 (2017)
Berti, F., Pereira, O., Standaert, F.-X.: Reducing the cost of authenticity with leakages: a CIML2-secure AE scheme with one call to a strongly protected tweakable block cipher. Cryptology ePrint Archive, Report 2019/451 (2019).https://eprint.iacr.org/2019/451
Bertoni, G., Daemen, J., Peters, M., Van Assche, G., Van Keer, R.: CAESAR submission: Ketje v2. Technical report (2016)
Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP - towards side-channel secure authenticated encryption. Transactions on Symmetric Cryptology 2017(1), pp. 80–105 (2017)
Dobraunig, C., Mennink, B.: Leakage resilience of the duplex construction. IACR Cryptology ePrint Archive 2019, p. 225 (2019)
Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS 2008, pp. 293–302 (2008)
Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 567–597. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_20
Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Leakage-resilient authenticated encryption with misuse in the leveled leakage setting: Definitions, separation results, and constructions. Cryptology ePrint Archive, Report 2018/484 (2018)
Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Towards lightweight side-channel security and the leakage-resilience of the duplex sponge (2019)
Hirose, S.: Some plausible constructions of double-block-length hash functions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006). https://doi.org/10.1007/11799313_14
IETF: The transport layer security (TLS) protocol version 1.3 draft-ietf-tls-tls13-28. Technical report (2018). https://tools.ietf.org/html/draft-ietf-tls-tls13-28
Journault, A., Standaert, F.-X.: Very high order masking: efficient implementation and security evaluation. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 623–643. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_30
Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press, Boca Raton (2014)
Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of operation. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_20
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_3
Longo, J., De Mulder, E., Page, D., Tunstall, M.: SoC it to EM: electromagnetic side-channel attacks on a complex system-on-chip. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 620–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_31
Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Boston, MA (2007). https://doi.org/10.1007/978-0-387-38162-6
Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying standard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)
Pereira, O., Standaert, F.-X., Vivek, S.: Leakage-resilient authentication and encryption from symmetric cryptographic primitives. In: ACM CCS 2015, pp. 96–108 (2015)
Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptography under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_19
Acknowledgments
François-Xavier Standaert is a senior research associate of the Belgian Fund for Scientific Research (F.R.S.-FNRS). This work has been funded in parts by the European Union (EU) and the Walloon Region through the FEDER project USERMedia (convention number 501907-379156) and the ERC project SWORD (convention number 724725).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Berti, F., Pereira, O., Standaert, FX. (2019). Reducing the Cost of Authenticity with Leakages: a \(\mathsf {CIML2}\)-Secure \(\mathsf {AE}\) Scheme with One Call to a Strongly Protected Tweakable Block Cipher. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds) Progress in Cryptology – AFRICACRYPT 2019. AFRICACRYPT 2019. Lecture Notes in Computer Science(), vol 11627. Springer, Cham. https://doi.org/10.1007/978-3-030-23696-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-23696-0_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23695-3
Online ISBN: 978-3-030-23696-0
eBook Packages: Computer ScienceComputer Science (R0)