Skip to main content

A Quantitative Metric Temporal Logic for Execution-Time Constrained Verification

  • Conference paper
  • First Online:
Cyber Physical Systems. Model-Based Design (CyPhy 2018, WESE 2018)

Abstract

In the context of run-time model checking, it could be desirable to prioritize and schedule the verification of system properties, so that the verification process, too, meets the time constraints of the underlying online experiment. In this paper, we introduce the Quantitative Metric Temporal Logic for Verification Time (QMTL-VT) to formally describe these constraints on verification time for properties formulated in a given temporal logic. Using QMTL-VT, we can query for satisfaction of time constraints (\(\mathcal {V}\)), the bounds of execution times (\(\mathcal {V}_{I}\)), and the probability of being checkable within these bounds (\(\mathcal {V}_{P}\)). Building up on that, we can execute queries under temporal conditions (\(\mathcal {V}_{C}\)), express their order (\(\mathcal {V}_{S}\)), and provide alternatives (\(\mathcal {V}_{A}\)) for the case of constraint violations. We apply a tool implementation of QMTL-VT to a set of UPPAAL sample models to demonstrate how to perform verification of given properties under real-time constraints, and discuss syntax and semantics in a medical case study on heart-motion tracking as an online real-time scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rinast, J.: An online model-checking framework for timed automata. Ph.D. thesis, Technische Universität Hamburg (2015)

    Google Scholar 

  2. Dasarathy, B.: Timing constraints of real-time systems: constructs for expressing them, methods of validating them. IEEE Trans. Softw. Eng. SE–11(1), 80–86 (1985)

    Article  Google Scholar 

  3. Wang, F.: Timing behavior analysis for real-time systems. In: Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science, pp. 112–122 (1995)

    Google Scholar 

  4. Xu, J., Parnas, D.L.: On satisfying timing constraints in hard-real-time systems. IEEE Trans. Softw. Eng. 19, 70–84 (1993)

    Article  Google Scholar 

  5. Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications, vol. 24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4614-0676-1

    Book  MATH  Google Scholar 

  6. Lisper, B., Nordlander, J.: A simple and flexible timing constraint logic. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7610, pp. 80–95. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34032-1_12

    Chapter  Google Scholar 

  7. Pelánek, R.: Reduction and abstraction techniques for model checking. Ph.D. thesis, Masarykova univerzita, Fakulta informatiky (2006)

    Google Scholar 

  8. Grosu, R., Smolka, S.A.: Monte Carlo model checking. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1_18

    Chapter  Google Scholar 

  9. Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 408–414. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107_32

    Chapter  Google Scholar 

  10. Kumar, R., Mercer, E.G.: Load balancing parallel explicit state model checking. Electron. Notes Theor. Comput. Sci. 128(3), 19–34 (2005)

    Article  Google Scholar 

  11. Ferdinand, C., Heckmann, R.: aiT: worst-case execution time prediction by static program analysis. In: Jacquart, R. (ed.) Building the Information Society. IIFIP, vol. 156, pp. 377–383. Springer, Boston (2004). https://doi.org/10.1007/978-1-4020-8157-6_29

    Chapter  Google Scholar 

  12. Edgar, S., Burns, A.: Statistical analysis of WCET for scheduling. In: Proceedings of 22nd IEEE Real-Time Systems Symposium (RTSS 2001), pp. 215–224 (2001)

    Google Scholar 

  13. Kim, S., Patel, H.D., Edwards, S.A.: Using a Model Checker to Determine Worst-Case Execution Time. Computer Science Technical Report CUCS-038-09. Columbia University, New York (2009)

    Google Scholar 

  14. Al-Bataineh, O., Reynolds, M., French, T.: Accelerating worst case execution time analysis of timed automata models with cyclic behaviour. Formal Aspects Comput. 27, 917–949 (2015)

    Article  MathSciNet  Google Scholar 

  15. Li, T., Tan, F., Wang, Q., Bu, L., Cao, J.N., Liu, X.: From offline toward real time: a hybrid systems model checking and cps codesign approach for medical device plug-and-play collaborations. IEEE Trans. Parallel Distrib. Syst. 25, 642–652 (2014)

    Article  Google Scholar 

  16. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model checking. In: Proceedings of the 33rd International Conference on Software Engineering (ICSE), pp. 341–350 (2011)

    Google Scholar 

  17. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6, 512–535 (1994)

    Article  Google Scholar 

  18. STS Institute, Website of the QMTL-VT tool implementation (2018). https://www.tuhh.de/sts/research/model-checking-abstract-interpretation/qmtl-vt.html

  19. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Quantitative verification of implantable cardiac pacemakers. In: 2012 IEEE 33rd Real-Time Systems Symposium (RTSS), pp. 263–272. IEEE (2012)

    Google Scholar 

  20. Antoni, S.T., et al.: Model checking for trigger loss detection during Doppler ultrasound-guided fetal cardiovascular MRI. Int. J. Comput. Assist. Radiol. Surg. 13, 1755–1766 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Lehmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lehmann, S., Antoni, ST., Schlaefer, A., Schupp, S. (2019). A Quantitative Metric Temporal Logic for Execution-Time Constrained Verification. In: Chamberlain, R., Taha, W., Törngren, M. (eds) Cyber Physical Systems. Model-Based Design. CyPhy WESE 2018 2018. Lecture Notes in Computer Science(), vol 11615. Springer, Cham. https://doi.org/10.1007/978-3-030-23703-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23703-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23702-8

  • Online ISBN: 978-3-030-23703-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics