Skip to main content

A Study on Local Search Meta-heuristics for Ontology Alignment

  • Chapter
  • First Online:
Computational Intelligence for Semantic Knowledge Management

Part of the book series: Studies in Computational Intelligence ((SCI,volume 837))

Abstract

Ontologies are one of the most suitable methodologies to provide formalized representations of the real-world data in several contexts such as the emerging paradigm of the Internet of Things. In spite of their key capability of providing an abstract representation of the information captured by different sources, the variety of ways that a domain can be conceptualized results in the development of heterogeneous ontologies with overlapping parts. In order to address this problem, a so-called ontology alignment process is required. This process allows generating a set of correspondences between semantically similar entities of two ontologies and, as a consequence, enabling system interoperability. Unfortunately, this process is a complex and time-consuming task. Therefore, recently, meta-heuristics are appearing as a suitable methodology to implement it. However, no meta-heuristics based on local search optimization have been applied until now. This paper bridges this gap by performing a comparison among some popular local search-based algorithms for generating an alignment between two ontologies. As shown by the results involving well-known benchmarks, Tabu search results to be the best performer in terms of precision, recall and F-measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://oaei.ontologymatching.org/.

  2. 2.

    http://oaei.ontologymatching.org/.

  3. 3.

    http://wordnet.princeton.edu/.

References

  1. Acampora, Giovanni, Autilia Vitiello. 2012, Improving agent interoperability through a memetic ontology alignment: A comparative study. In 2012 IEEE International Conference on Fuzzy Systems, 1–8.

    Google Scholar 

  2. Acampora, Giovanni, Pasquale Avella, Vincenzo Loia, Saverio Salerno, and Autilia Vitiello. 2011. Improving ontology alignment through memetic algorithms. In 2011 IEEE International Conference on Fuzzy Systems (FUZZ), 1783–1790. IEEE.

    Google Scholar 

  3. Acampora, Giovanni, Hisao Ishibuchi, and Autilia Vitiello. 2014. A comparison of multi-objective evolutionary algorithms for the ontology meta-matching problem. In 2014 IEEE Congress on Evolutionary Computation (CEC), 413–420. IEEE.

    Google Scholar 

  4. Acampora, Giovanni, Uzay Kaymak, Vincenzo Loia, and Autilia Vitiello. 2013. Applying NSGA-II for solving the ontology alignment problem. In 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 1098–1103. IEEE.

    Google Scholar 

  5. Acampora, Giovanni, Vincenzo Loia, Saverio Salerno, and Autilia Vitiello. 2012. A hybrid evolutionary approach for solving the ontology alignment problem. International Journal of Intelligent Systems 27 (3): 189–216.

    Article  Google Scholar 

  6. Acampora, Giovanni, Vincenzo Loia, and Autilia Vitiello. 2013. Enhancing ontology alignment through a memetic aggregation of similarity measures. Information Sciences 250: 1–20.

    Article  Google Scholar 

  7. Acampora, Giovanni, Witold Pedrycz, and Autilia Vitiello. 2015. A competent memetic algorithm for learning fuzzy cognitive maps. IEEE Transactions on Fuzzy Systems 23 (6): 2397–2411.

    Article  Google Scholar 

  8. Blum, Christian, and Andrea Roli. 2003. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys (CSUR) 35 (3): 268–308.

    Article  Google Scholar 

  9. Bock, Jürgen, and Jan Hettenhausen. 2012. Discrete particle swarm optimisation for ontology alignment. Information Sciences 192: 152–173.

    Article  Google Scholar 

  10. Camastra, Francesco, Maria Donata Di Taranto, and Antonino Staiano. 2015. Statistical and computational methods for genetic diseases: An overview. Computational and Mathematical Methods in Medicine 2015.

    Google Scholar 

  11. Camastra, Francesco, Francesco Esposito, and Antonino Staiano. 2018. Linear SVM-based recognition of elementary juggling movements using correlation dimension of Euler Angles of a single arm. Neural Computing and Applications 29 (11): 1005–1013.

    Article  Google Scholar 

  12. David, Jérôme, Fabrice Guillet, and Henri Briand. 2006. Matching directories and owl ontologies with aroma. In Proceedings of the 15th ACM International Conference on Information and Knowledge Management, 830–831. ACM.

    Google Scholar 

  13. EL-Naggar, Khaled M., M.R. AlRashidi, Mohamad AlHajri, Jalel Ben Othman. 2012. Simulated annealing algorithm for photovoltaic parameters identification. Solar Energy 86 (1): 266–274.

    Article  Google Scholar 

  14. Euzenat, Jérôme, and Pavel Shvaiko. 2013. Ontology Matching, 2nd ed. Heidelberg: Springer.

    Book  Google Scholar 

  15. Ganz, Frieder, Payam Barnaghi, and Francois Carrez. 2016. Automated semantic knowledge acquisition from sensor data. IEEE Systems Journal 10 (3): 1214–1225.

    Article  Google Scholar 

  16. Gao, Jian, Rong Chen, and Wu Deng, 2013. An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem. International Journal of Production Research 51 (3): 641–651.

    Article  Google Scholar 

  17. Genesereth, Michael R., and Nils J. Nilsson. 1987. Logical Foundations of Artificial Intelligence, vol. 2. San Francisco: Morgan Kaufmann.

    Google Scholar 

  18. Glover, Fred, and Manuel Laguna. 1998. Tabu search. In Handbook of Combinatorial Optimization, 2093–2229. Boston: Springer.

    Chapter  Google Scholar 

  19. Gruber, Thomas R. 1993. A translation approach to portable ontology specifications. Knowledge Acquisition 5 (2): 199–220.

    Article  Google Scholar 

  20. Hameed, Adil, Alun Preece, and Derek Sleeman. 2004. Ontology reconciliation. In Handbook on Ontologies, 231–250. Berlin: Springer.

    Chapter  Google Scholar 

  21. Jean-Mary, Yves R., E. Patrick Shironoshita, and Mansur R. Kabuka. 2009. Ontology matching with semantic verification. Web Semantics: Science, Services and Agents on the World Wide Web 7 (3): 235–251.

    Google Scholar 

  22. Kirkpatrick, Scott. 1984. Optimization by simulated annealing: Quantitative studies. Journal of Statistical Physics 34 (5–6): 975–986.

    Article  MathSciNet  Google Scholar 

  23. Kirkpatrick, Scott, C. Daniel Gelatt, and Mario P. Vecchi. 1983. Optimization by simulated annealing. Science 220 (4598): 671–680.

    Article  MathSciNet  Google Scholar 

  24. Li, Juanzi, Jie Tang, Yi Li, and Qiong Luo. 2009. Rimom: A dynamic multistrategy ontology alignment framework. IEEE Transactions on Knowledge and data Engineering 21 (8): 1218–1232.

    Article  Google Scholar 

  25. Lim, Andrew, Brian Rodrigues, and Xingwen Zhang. 2006. A simulated annealing and hill-climbing algorithm for the traveling tournament problem. European Journal of Operational 174 (3): 1459–1478.

    Article  MathSciNet  Google Scholar 

  26. Luke, Sean. 2009. Essentials of Metaheuristics, vol. 113. Lulu Raleigh.

    Google Scholar 

  27. Nambi, S.N. Akshay Uttama, Chayan Sarkar, R. Venkatesha Prasad, and Abdur Rahim. 2014. A unified semantic knowledge base for IoT. In 2014 IEEE World Forum on Internet of Things (WF-IoT), 575–580. IEEE.

    Google Scholar 

  28. Onwunalu, Jérôme, E., Louis J. Durlofsky. 2010. Application of a particle swarm optimization algorithm for determining optimum well location and type. Computational Geosciences 14 (1): 183–198.

    Article  Google Scholar 

  29. Otero-Cerdeira, Lorena, Francisco J. Rodríguez-Martínez, and Alma Gómez-Rodríguez. 2015. Ontology matching: A literature review. Expert Systems with Applications 42 (2): 949–971.

    Article  Google Scholar 

  30. Pezzella, Ferdinando, Gianluca Morganti, and Giampiero Ciaschetti. 2008. A genetic algorithm for the flexible job-shop scheduling problem. Computers & Operations Research 35 (10): 3202–3212.

    Article  Google Scholar 

  31. Stoilos, Giorgos, Giorgos Stamou, and Stefanos Kollias. 2005. A string metric for ontology alignment. In International Semantic Web Conference, 624–637. Berlin: Springer.

    Google Scholar 

  32. Wang, Junli, Zhijun Ding, and Changjun Jiang. 2006. Gaom: Genetic algorithm based ontology matching. In IEEE Asia-Pacific Conference on Services Computing, APSCC’06, 617–620. IEEE.

    Google Scholar 

  33. Yager, Ronald R. 1988. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on systems, Man, and Cybernetics 18 (1): 183–190.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Autilia Vitiello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acampora, G., Vitiello, A. (2020). A Study on Local Search Meta-heuristics for Ontology Alignment. In: Acampora, G., Pedrycz, W., Vasilakos, A., Vitiello, A. (eds) Computational Intelligence for Semantic Knowledge Management. Studies in Computational Intelligence, vol 837. Springer, Cham. https://doi.org/10.1007/978-3-030-23760-8_4

Download citation

Publish with us

Policies and ethics