Skip to main content

DE VITO: A Dual-Arm, High Degree-of-Freedom, Lightweight, Inexpensive, Passive Upper-Limb Exoskeleton for Robot Teleoperation

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11649))

Included in the following conference series:

Abstract

While robotics has made significant advances in perception, planning and control in recent decades, the vast majority of tasks easily completed by a human, especially acting in dynamic, unstructured environments, are far from being autonomously performed by a robot. Teleoperation, remotely controlling a slave robot by a human operator, can be a realistic, complementary transition solution that uses the motion intelligence of a human in complex tasks while exploiting the robot’s autonomous reliability and precision in less challenging situations.

We introduce DE VITO, a seven degree-of-freedom, dual-arm upper-limb exoskeleton that passively measures the pose of a human arm. DE VITO is a lightweight, simplistic and energy-efficient design with a total material cost of at least an order of magnitude less than previous work. Given the estimated human pose, we implement both joint and Cartesian space kinematic control algorithms and present qualitative experimental results on various complex manipulation tasks teleoperating Robot DE NIRO, a research platform for mobile manipulation, that demonstrate the functionality of DE VITO. We provide the CAD models, open-source code and supplementary videos of DE VITO at http://www.imperial.ac.uk/robot-intelligence/robots/de_vito/.

F. Falck and K. Larppichet—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackerman, E.: Toyota gets back into humanoid robots with new T-HR3 (2018). https://spectrum.ieee.org/automaton/robotics/humanoids/toyota-gets-back-into-humanoid-robots-with-new-thr3

  2. Ackerman, E., Guizzo, E.: DARPA robotics challenge finals: rules and course (2018). https://spectrum.ieee.org/automaton/robotics/humanoids/drc-finals-course

  3. Boone, D.C., Azen, S.P.: Normal range of motion of joints in male subjects. J. Bone Joint Surg. 61(5), 756–759 (1979)

    Article  Google Scholar 

  4. clinicalgate.com: Upper limb - general description (2015). https://clinicalgate.com/upper-limb-2/

  5. Debrunner, T., Saeedi, S., Kelly, P.H.: AUKE: automatic kernel code generation for an analogue simd focal-plane sensor-processor array. ACM Trans. Archit. Code Optim. (TACO) 15(4), 59 (2019)

    Google Scholar 

  6. Falck, F., Doshi, S., Smuts, N., Lingi, J., Rants, K., Kormushev, P.: Human-centered manipulation and navigation with Robot DE NIRO. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Workshop Towards Robots that Exhibit Manipulation Intelligence (2018)

    Google Scholar 

  7. Fang, B., Guo, D., Sun, F., Liu, H., Wu, Y.: A robotic hand-arm teleoperation system using human arm/hand with a novel data glove. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2483–2488. IEEE (2015)

    Google Scholar 

  8. Gopura, R., Kiguchi, K., Bandara, D.: A brief review on upper extremity robotic exoskeleton systems. In: 2011 6th IEEE International Conference on Industrial and Information Systems (ICIIS), pp. 346–351. IEEE (2011)

    Google Scholar 

  9. Hirche, S., Buss, M.: Human-oriented control for haptic teleoperation. Proc. IEEE 100(3), 623–647 (2012)

    Article  Google Scholar 

  10. Jarrasse, N., Morel, G.: Connecting a human limb to an exoskeleton. IEEE Trans. Robot. 28(3), 697–709 (2012)

    Article  Google Scholar 

  11. Kemp, C.C., Edsinger, A., Torres-Jara, E.: Challenges for robot manipulation in human environments [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 20–29 (2007)

    Article  Google Scholar 

  12. Kim, B., Deshpande, A.D.: Controls for the shoulder mechanism of an upper-body exoskeleton for promoting scapulohumeral rhythm. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 538–542. IEEE (2015)

    Google Scholar 

  13. Krishnan, R.H., Devanandh, V., Brahma, A.K., Pugazhenthi, S.: Estimation of mass moment of inertia of human body, when bending forward, for the design of a self-transfer robotic facility. J. Eng. Sci. Technol. 11(2), 166–176 (2016)

    Google Scholar 

  14. Lu, J., Haninger, K., Chen, W., Gowda, S., Tomizuka, M., Carmena, J.M.: Design of a passive upper limb exoskeleton for macaque monkeys. J. Dyn. Syst. Measur. Control 138(11), 111011 (2016)

    Article  Google Scholar 

  15. Nef, T., Mihelj, M., Kiefer, G., Perndl, C., Muller, R., Riener, R.: ARMin-exoskeleton for arm therapy in stroke patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007, pp. 68–74. IEEE (2007)

    Google Scholar 

  16. Perry, J.C., Rosen, J., Burns, S.: Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12(4), 408–417 (2007)

    Article  Google Scholar 

  17. Research Robotics: Baxter research robot SDK wiki - arm control overview and hardware specifications (2015). http://sdk.rethinkrobotics.com/wiki/Arm_Control_Overview, http://sdk.rethinkrobotics.com/wiki/Hardware_Specifications

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Falck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falck, F., Larppichet, K., Kormushev, P. (2019). DE VITO: A Dual-Arm, High Degree-of-Freedom, Lightweight, Inexpensive, Passive Upper-Limb Exoskeleton for Robot Teleoperation. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11649. Springer, Cham. https://doi.org/10.1007/978-3-030-23807-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23807-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23806-3

  • Online ISBN: 978-3-030-23807-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics