Skip to main content

Abstract

Malware is a potential vulnerability for the Internet of Things; it is for this reason that spread of malware on Wireless Sensor Networks has been studied from different perspectives. However, the individual characteristics have not been considered in most of the proposed models. Consequently, Agent-Based Models can be used, as a mathematical tool, to analyse malware propagation. In this work, an ABM is created from three main elements: agents, environment and rules. This article presents a review of an agent-based model to simulate malware spreading in wireless sensor networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.: Agent based modelling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev. 24, 13–33 (2017)

    Article  Google Scholar 

  2. Anderson, T.M., Dragićević, S.: Network-agent based model for simulating the dynamic spatial network structure of complex ecological systems. Ecol. Modell. 389, 19–32 (2018)

    Article  Google Scholar 

  3. Arifin, S.N., Madey, G.R., Collins, F.H.: Spatial Agent-Based Simulation Modeling in Public Health: Design, Implementation, and Applications for Malaria Epidemiology. Wiley, New York (2016)

    Book  Google Scholar 

  4. Bin Karnain, A., Bin Zakaria, Z.: A review on ZigBee security enhancement in smart home environment. In: 2nd International Conference on Information Science and Security (ICISS), pp. 1–4. IEEE (2015)

    Google Scholar 

  5. Chizari, H., Zulkurnain, A.U.: Modelling malware response in wireless sensor networks using stochastic cellular automata. J. Mobile Embed. Distrib. Syst. 6(4), 159–166 (2014)

    Google Scholar 

  6. Chu, Z., Yang, B., Ha, C.Y., Ahn, K.: Modeling GDP fluctuations with agent-based model. Physica A 503, 572–581 (2018)

    Article  Google Scholar 

  7. Conti, M.: Secure Wireless Sensor Networks: Threats and Solutions, vol. 65. Springer, New York (2015)

    Book  Google Scholar 

  8. Feng, L., Song, L., Zhao, Q., Wang, H.: Modeling and stability analysis of worm propagation in wireless sensor network. Math. Probl. Eng. (2015)

    Google Scholar 

  9. Helbing, D.: Social Self-Organization: Agent-Based Simulations and Experiments to Study Emergent Social Behavior. Springer, Heidelberg (2012)

    Book  Google Scholar 

  10. Hu, J., Song, Y.: The model of malware propagation in wireless sensor networks with regional detection mechanism. In: China Conference on Wireless Sensor Networks, pp. 651–662. Springer (2014)

    Google Scholar 

  11. Kermack, W.O., Mckendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. 115, 700–721 (1927)

    Article  Google Scholar 

  12. Keshri, N., Mishra, B.K.: Optimal control model for attack of worms in wireless sensor network. Int. J. Grid Distrib. Comput. 7, 251–272 (2014)

    Article  Google Scholar 

  13. Keshri, N., Mishra, B.K.: Two time-delay dynamic model on the transmission of malicious signals in wireless sensor network. Chaos Solitons Fractals 68, 151–158 (2014)

    Article  Google Scholar 

  14. Li, Q., Zhang, B., Cui, L., Fan, Z., Athanasios, V.V.: Epidemics on small worlds of tree-based wireless sensor networks. J. Syst. Sci. Complex 27(6), 1095–1120 (2014)

    Article  MathSciNet  Google Scholar 

  15. O’Mahony, G.D., Harris, P.J., Murphy, C.C.: Analyzing the vulnerability of wireless sensor networks to a malicious matched protocol attack. In: 2018 International Carnahan Conference on Security Technology (ICCST), pp. 1–5. IEEE (2018)

    Google Scholar 

  16. Project Mesa Team: Mesa: Agent-Based Modeling in Python 3+ (2018). https://github.com/projectmesa/mesa/

  17. Razak, M.F.A., Anuar, N.B., Salleh, R., Firdaus, A.: The rise of “malware”: bibliometric analysis of malware study. J. Netw. Comput. Appl. 75, 58–76 (2016)

    Article  Google Scholar 

  18. del Rey, A.M., Guillén, J.H., Sánchez, G.R.: Modeling malware propagation in wireless sensor networks with individual-based models. In: Conference of the Spanish Association for Artificial Intelligence, pp. 194–203. Springer (2016)

    Google Scholar 

  19. Shen, S., Huang, L., Liu, J., Champion, A.C., Yu, S., Cao, Q.: Reliability evaluation for clustered WSNs under malware propagation. Sensors 16(6), 855 (2016)

    Article  Google Scholar 

  20. Shen, S., Ma, H., Fan, E., Hu, K., Yu, S., Liu, J., Cao, Q.: A non-cooperative non-zero-sum game-based dependability assessment of heterogeneous wsns with malware diffusion. J. Netw. Comput. Appl. 91, 26–35 (2017)

    Article  Google Scholar 

  21. Siegfried, R.: Modeling and Simulation of Complex Systems: A Framework for Efficient Agent-Based Modeling and Simulation. Springer, Berlin (2014)

    Google Scholar 

  22. Wang, T., Wu, Q., Wen, S., Cai, Y., Tian, H., Chen, Y., Wang, B.: Propagation modeling and defending of a mobile sensor worm in wireless sensor and actuator networks. Sensors 17(1), 139 (2017)

    Article  Google Scholar 

  23. Wang, Y., Li, D., Dong, N.: Cellular automata malware propagation model for WSN based on multi-player evolutionary game. IET Netw. 7(3), 129–135 (2017)

    Article  Google Scholar 

  24. Wurzer, G., Kowarik, K., Reschreiter, H.: Agent-based Modeling and Aimulation in Archaeology. Springer, Cham (2015)

    Google Scholar 

  25. Zhang, Z., Si, F.: Dynamics of a delayed SEIRS-V model on the transmission of worms in a wireless sensor network. Adv. Differ. Equations 2014(1), 295 (2014)

    Article  MathSciNet  Google Scholar 

  26. Zhu, L., Zhao, H.: Dynamical analysis and optimal control for a malware propagation model in an information network. Neurocomputing 149, 1370–1386 (2015)

    Article  Google Scholar 

  27. Zhu, L., Zhao, H., Wang, X.: Stability and bifurcation analysis in a delayed reaction-diffusion malware propagation model. Comput. Math. Appl. 69(8), 852–875 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by Ministerio de Ciencia, Innovación y Universidades (MCIU, Spain), Agenda Estatal de Investigación (AEI, Spain), and Fondo Europeo de Desarrollo Regional (FEDER, UE) under project with reference TIN2017-84844-C2-2-R (MAGERAN) and the project with reference SA054G18 supported by Consejería de Educación (Junta de Castilla y León, Spain).

F.K. Batista has supported by IFARHU-SENACYT scholarship program (Panama).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrah Kristel Batista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Batista, F.K., del Rey, A.M., Queiruga-Dios, A. (2020). A Review of SEIR-D Agent-Based Model. In: Herrera-Viedma, E., Vale, Z., Nielsen, P., Martin Del Rey, A., Casado Vara , R. (eds) Distributed Computing and Artificial Intelligence, 16th International Conference, Special Sessions. DCAI 2019. Advances in Intelligent Systems and Computing, vol 1004. Springer, Cham. https://doi.org/10.1007/978-3-030-23946-6_15

Download citation

Publish with us

Policies and ethics