Skip to main content

Immersive Virtual Reality in Technical Drawing of Engineering Degrees

  • Conference paper
  • First Online:
Methodologies and Intelligent Systems for Technology Enhanced Learning, 9th International Conference (MIS4TEL 2019)

Abstract

The use of virtual reality (VR) technology is reaching almost all sectors: medicine, engineering, entertainment, defense, marketing, etc. Especially to those whose main objective is the representation of elements and three-dimensional environments of reality. This is especially relevant within the field of teaching-learning activities of technical drawing. In this case, one of the competences is to represent three-dimensional pieces and objects in two-dimensional drawings. In this process the student must have and develop the spatial skills that depend on the innate abilities of each one. In this communication an experience of the use of the Immersive Virtual Reality is presented to the development of spatial skills in technical drawing. This work describes the design, creation and programming of the computer application, choice of equipment and development of a methodology for use in teaching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sorby, S.A.: Developing 3-D spatial visualization skills. Eng. Des. Graph. J. 63(2), 21–32 (1999)

    Google Scholar 

  2. Rafi, A., Samsudin, K.A., Said, C.H.: Training in spatial visualization: the effects of training method and gender. Educ. Technol. Soc. 11(3), 127–140 (2008)

    Google Scholar 

  3. Vergara, D., Lorenzo, M., Rubio, M.P.: Virtual environments in materials science and engineering: the students’ opinion. In: Lim, H. (ed.) Handbook of Research on Recent Developments in Materials Science and Corrosion Engineering Education, 1st edn., pp. 148–165. IGI Global, Hershey (2015)

    Chapter  Google Scholar 

  4. Adánez, G.P., Velasco, A.D.: Construção de um teste de visualização a partir da psicologia cognitiva. Avaliação Psicologica 1(1), 39–47 (2002)

    Google Scholar 

  5. Uttal, D.H., Miller, D.I., Newcombe, N.S.: Exploring and enhancing spatial thinking: links to achievement in science, technology, engineering, and mathematics? Curr. Dir. Psychol. Sci. 22(5), 367–373 (2013)

    Article  Google Scholar 

  6. Wang, Ch.X, Zhao, Q., Sun, W., Wan, X., Cui, Q.: 3D scene of virtual reality system design and research. Key Eng. Mater. 522, 761–768 (2012)

    Article  Google Scholar 

  7. Vergara, D., Rubio, M.P., Lorenzo, M.: A virtual resource for enhancing the spatial comprehension of crystal lattices. Educ. Sci. 8, 153 (2018)

    Article  Google Scholar 

  8. Griol, D., Molina, J.: Measuring the differences between human-human and human-machine dialogs. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 4, 2 (2015)

    Article  Google Scholar 

  9. Palomino, C.G., Nunes, C.S., Silveira, R.A., González, S.R., Nakayama, M.K.: Adaptive agent-based environment model to enable the teacher to create an adaptive class. In: Advances in Intelligent Systems and Computing, vol. 617 (2017)

    Google Scholar 

  10. Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J.M.: Tendencies of technologies and platforms in smart cities: a state-of-the-art review. Wirel. Commun. Mob. Comput. 2018, 17 (2018)

    Article  Google Scholar 

  11. Gonzalez-Briones, A., Prieto, J., De La Prieta, F., Herrera-Viedma, E., Corchado, J.M.: Energy optimization using a case-based reasoning strategy. Sensors 18(3), 865 (2018)

    Article  Google Scholar 

  12. García, O., Chamoso, P., Prieto, J., Rodríguez, S., De La Prieta, F.: A serious game to reduce consumption in smart buildings. Commun. Comput. Inf. Sci. 722, 481–493 (2017)

    Google Scholar 

  13. Vergara, D., Rubio, M.P., Lorenzo, M.: On the design of virtual reality learning environments in engineering. Multimodal Technol. Interact. 1, 11 (2017)

    Article  Google Scholar 

  14. Vergara, D., Rubio, M.P., Lorenzo, M.: Interactive virtual platform for simulating a concrete compression test. Key Eng. Mater. 572, 582–585 (2014)

    Article  Google Scholar 

  15. Vergara, D., Rubio, M.P.: Active methodologies through interdisciplinary teaching links: industrial radiography and technical drawing. J. Mater. Educ. 34(5–6), 175–186 (2012)

    Google Scholar 

  16. Vergara, D., Rubio, M.P., Lorenzo, M.: New approach for the teaching of concrete compression tests in large groups of engineering students. J. Prof. Issues Eng. Educ. Pract. 143(2), 05016009 (2017)

    Article  Google Scholar 

  17. Sampaio, A.Z.: Virtual reality technology applied in teaching and research in civil engineering education. J. Inf. Tech. Appl. Educ. 1, 152–163 (2012)

    Google Scholar 

  18. Chou, Ch., Hsu, H.-L., Yao, Y.-S.: Construction of a virtual reality learning environment for teaching structural analysis. Comput. Appl. Eng. Educ. 5, 223–230 (1997)

    Article  Google Scholar 

  19. Vergara, D., Rubio, M.P., Lorenzo, M.: A virtual environment for enhancing the understanding of ternary phase diagrams. J. Mater. Educ. 37(3–4), 93–101 (2015)

    Google Scholar 

  20. Vergara, D., Rodríguez, M., Rubio, M.P., Ferrer, J., Núñez, F.J., Moralejo, L.: Formación de personal técnico en ensayos no destructivos por ultrasonidos mediante realidad virtual. Dyna 93(2), 150–154 (2018)

    Article  Google Scholar 

  21. Rubio, M.P., Vergara, D., Rodríguez, S., Extremera, J.: Virtual reality learning environments in materials engineering: rockwell hardness test. In: Di Mascio, T. et al. (eds.) Methodologies and Intelligent Systems for Technology Enhanced Learning (MIS4TEL 2018), AISC 804, pp. 106–111. Springer, Switzerland (2019)

    Google Scholar 

  22. Boletsis, C.: The new era of virtual reality locomotion: a systematic literature review of techniques and a proposed typology. Multimodal Technol. Interact. 1, 24 (2017)

    Article  Google Scholar 

  23. Bhattacharjee, D., Paul, A., Kim, J.H., Karthigaikumar, P.: An immersive learning model using evolutionary learning. Comput. Electr. Eng. 65, 236–249 (2018)

    Article  Google Scholar 

  24. De Freitas, S., Rebolledo-Mendez, G., Liarokapis, F., Magoulas, G., Poulovassilis, A.: Learning as immersive experiences: using the four-dimensional framework for designing and evaluating immersive learning experiences in a virtual world. Br. J. Educ. Technol. 41, 69–85 (2010)

    Article  Google Scholar 

  25. Lee, E.A.L., Wong, K.W.: Learning with desktop virtual reality: low spatial ability learners are more positively affected. Comput. Educ. 79, 49–58 (2014)

    Article  Google Scholar 

  26. Parong, J., Mayer, R.E.: Learning science in immersive virtual reality. J. Educ. Psychol. 110(6), 785–797 (2018)

    Article  Google Scholar 

  27. Conference for AR & VR innovation: http://www.xrdconf.com. Accessed 08 Feb 2019

  28. Unreal Engine 4 Games: https://wiki.unrealengine.com/Category:Games. Accessed 08 Feb 2019

  29. Vandenberg, S.G., Kuse, A.R.: Mental rotations, a group test of three-dimensional spatial visualization. Percept. Mot. Ski. 47(2), 599–604 (1978)

    Article  Google Scholar 

  30. Guay, R.B.: Purdue Spatial Visualization Tests. Purdue Research Foundation, West Lafayette (1977)

    Google Scholar 

Download references

Acknowledgments

This work has been developed as part of “Virtual-Ledgers-Tecnologías DLT/Blockchain y Cripto-IOT sobre organizaciones virtuales de agentes ligeros y su aplicación en la eficiencia en el transporte de última milla”, ID SA267P18, project financed by Junta Castilla y León, Consejería de Educación, and FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Rubio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rubio, M.P., Vergara, D., Rodríguez, S. (2020). Immersive Virtual Reality in Technical Drawing of Engineering Degrees. In: Gennari, R., et al. Methodologies and Intelligent Systems for Technology Enhanced Learning, 9th International Conference. MIS4TEL 2019. Advances in Intelligent Systems and Computing, vol 1007 . Springer, Cham. https://doi.org/10.1007/978-3-030-23990-9_9

Download citation

Publish with us

Policies and ethics