Skip to main content

Practical Applications of Multiagent Shepherding for Human-Machine Interaction

  • Conference paper
  • First Online:
Advances in Practical Applications of Survivable Agents and Multi-Agent Systems: The PAAMS Collection (PAAMS 2019)

Abstract

The shepherding problem is interesting for multiagent systems research as it requires multiple actors (e.g., dogs, humans) to exert indirect control over autonomous agents (e.g., sheep, cattle) for containment or transportation. Accordingly, plenty of research has focused on designing algorithms for robotic agents to solve such tasks. Almost no research, however, has utilized this task to investigate human-human or human-machine interactions, even though the shepherding problem encapsulates desirable qualities for an experimental paradigm to investigate the dynamics of human group and mixed-group coordination in complex tasks. This paper summarizes our recent research that has employed the shepherding problem to study complex multiagent human-human and human-machine interaction. The paper concludes with a discussion of practical applications for using the shepherding problem for the design of assistive agents that can be incorporated into human groups or enhance training and human learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen, D.J., James Nelson, W., Maharbiz, M.M.: Galvanotactic control of collective cell migration in epithelial monolayers. Nat. Mater. 13, 409–417 (2014)

    Article  Google Scholar 

  2. Lien, J.M., Rodríguez, S., Malric, J.P., Amato, N.M.: Shepherding behaviors with multiple shepherds. In: Proceedings 2005 IEEE International Conference on Robotics and Automation, pp. 3402–3407. IEEE, Piscataway (2005)

    Google Scholar 

  3. Lee, W., Kim, D.: Autonomous shepherding behaviors of multiple target steering robots. Sensors (Switzerland) 17 (2017)

    Google Scholar 

  4. Pierson, A., Schwager, M.: Controlling noncooperative herds with robotic herders. IEEE Trans. Robot. 34, 517–525 (2018)

    Article  Google Scholar 

  5. Licitra, R.A., Bell, Z.I., Doucette, E.A., Dixon, W.E.: Single agent indirect herding of multiple targets: a switched adaptive control approach. IEEE Control Syst. Lett. 2, 127–132 (2018)

    Article  Google Scholar 

  6. Strömbom, D., King, A.J.: Robot collection and transport of objects: a biomimetic process. Front. Robot. AI. 5, 48 (2018)

    Article  Google Scholar 

  7. Vaughan, R., Sumpter, N., Henderson, J., Frost, A., Cameron, S.: Experiments in automatic flock control. Rob. Auton. Syst. 31, 109–117 (2000)

    Article  Google Scholar 

  8. Paranjape, A.A., Chung, S.J., Kim, K., Shim, D.H.: Robotic herding of a flock of birds using an unmanned aerial vehicle. IEEE Trans. Robot. 34, 901–915 (2018)

    Article  Google Scholar 

  9. Özdemir, A., Gauci, M., Gross, R.: Shepherding with robots that do not compute. In: Proceedings of the 14th European Conference on Artificial Life, ECAL 2017, pp. 332–339. MIT Press, Cambridge (2017)

    Google Scholar 

  10. St. Clair, A., Mataric, M.: How robot verbal feedback can improve team performance in human-robot task collaborations. In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction - HRI 2015, pp. 213–220. ACM Press, New York (2015)

    Google Scholar 

  11. Nalepka, P., Kallen, R.W., Chemero, A., Saltzman, E., Richardson, M.J.: Herd those sheep: emergent multiagent coordination and behavioral-mode switching. Psychol. Sci. 28, 630–650 (2017)

    Article  Google Scholar 

  12. Nalepka, P., et al.: Human social motor solutions for human–machine interaction in dynamical task contexts. Proc. Natl. Acad. Sci. 116, 1437–1446 (2019)

    Article  Google Scholar 

  13. Richardson, M.J., et al.: Modeling embedded interpersonal and multiagent coordination. In: Muñoz, V.M., Gusikhin, O., Chang, V. (eds.) Proceedings of the 1st International Conference on Complex Information Systems, pp. 155–164. SciTePress, Setúbal (2016)

    Google Scholar 

  14. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25, 328–373 (2013)

    Article  MathSciNet  Google Scholar 

  15. Schaal, S., Kotosaka, S., Sternad, D.: Nonlinear dynamical systems as movement primitives. In: Proceedings of the 1st IEEE-RAS International Conference on Humanoid Robotics. IEEE, Piscataway (2000)

    Google Scholar 

  16. Warren, W.H.: The dynamics of perception and action. Psychol. Rev. 113, 358–389 (2006)

    Article  Google Scholar 

  17. Bernstein, N.A.: The Co-ordination and Regulation of Movements. Pergamon Press, Oxford (1967)

    Google Scholar 

  18. Saltzman, E., Kelso, J.A.S.: Skilled actions: a task-dynamic approach. Psychol. Rev. 94, 84–106 (1987)

    Article  Google Scholar 

  19. Warren, W., Fajen, B., Fuchs, A., Jirsa, V.: Behavioral dynamics of visually guided locomotion. Coord. Neural Behav. Soc. Dyn. 17, 45–75 (2008)

    Article  Google Scholar 

  20. Schmidt, R.C., Richardson, M.J.: Dynamics of interpersonal coordination. In: Fuchs, A., Jirsa, V.K. (eds.) Understanding Complex Systems, pp. 281–308. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74479-5_14

    Chapter  Google Scholar 

  21. Oullier, O., de Guzman, G., Jantzen, K.J., Lagarde, J., Scott Kelso, J.A.: Social coordination dynamics: measuring human bonding. Soc. Neurosci. 3, 178–192 (2008)

    Article  Google Scholar 

  22. Lamb, M., Kallen, R.W., Harrison, S.J., Di Bernardo, M., Minai, A., Richardson, M.J.: To pass or not to pass: modeling the movement and affordance dynamics of a pick and place task. Front. Psychol. 8, 1061 (2017)

    Article  Google Scholar 

  23. Warren, W.H.: Collective motion in human crowds. Curr. Dir. Psychol. Sci. 27, 232–240 (2018)

    Article  Google Scholar 

  24. Haken, H., Kelso, J.A.S., Bunz, H.: A theoretical model of phase transitions in human hand movements. Biol. Cybern. 51, 347–356 (1985)

    Article  MathSciNet  Google Scholar 

  25. Strömbom, D., et al.: Solving the shepherding problem: heuristics for herding autonomous, interacting agents. J. R. Soc. Interface 11, 20140719 (2014)

    Article  Google Scholar 

  26. Nalepka, P., et al.: Emergence of efficient, coordinated solutions despite differences in agent ability during human-machine interaction. In: Proceedings of the 18th International Conference on Intelligent Virtual Agents - IVA 2018, pp. 337–338. ACM Press, New York (2019)

    Google Scholar 

  27. Muro, C., Escobedo, R., Spector, L., Coppinger, R.P.: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav. Processes. 88, 192–197 (2011)

    Article  Google Scholar 

  28. D’Vincent, C.G., Nilson, R.M., Hanna, R.E.: Vocalization and coordinated feeding behavior of the humpback whale in Southeastern Alaska. Sci. Reports Whales Res. Inst. 36, 41–47 (1985)

    Google Scholar 

  29. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings 2002 IEEE International Conference on Robotics and Automation, pp. 1398–1403. IEEE, Piscataway (2002)

    Google Scholar 

  30. Dumas, G., de Guzman, G.C., Tognoli, E., Kelso, J.A.S.: The human dynamic clamp as a paradigm for social interaction. Proc. Natl. Acad. Sci. 111, E3726–E3734 (2014)

    Article  Google Scholar 

  31. Kostrubiec, V., Dumas, G., Zanone, P.G., Scott Kelso, J.A.: The virtual teacher (VT) paradigm: learning new patterns of interpersonal coordination using the human dynamic clamp. PLoS ONE 10, 1–24 (2015)

    Article  Google Scholar 

  32. Kelso, J.A.S., de Guzman, G.C., Reveley, C., Tognoli, E.: Virtual partner interaction (VPI): exploring novel behaviors via coordination dynamics. PLoS One 4 (2009)

    Article  Google Scholar 

  33. Kay, B.A., Kelso, J.A.S., Saltzman, E.L., Schöner, G.: Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model. J. Exp. Psychol. Hum. Percept. Perform. 13, 178–192 (1987)

    Article  Google Scholar 

  34. Richardson, M.J., Kallen, R.W.: Symmetry-breaking and the contextual emergence of human multiagent coordination and social activity. In: Dzhafarov, E., Jordan, S., Zhang, R., Cervantes, V. (eds.) World Scientific Review, pp. 1–57. World Scientific Publishing Co. (2015)

    Google Scholar 

  35. Sternad, D., Marino, H., Charles, S.K., Duarte, M., Dipietro, L., Hogan, N.: Transitions between discrete and rhythmic primitives in a unimanual task. Front. Comput. Neurosci. 7, 1–13 (2013)

    Article  Google Scholar 

  36. Zhang, Z., Sternad, D.: The primacy of rhythm: how discrete actions merge into a stable rhythmic pattern. J. Neurophysiol. (2018). https://doi.org/10.1152/jn.00587.2018

    Article  Google Scholar 

  37. Selinger, J.C., O’Connor, S.M., Wong, J.D., Donelan, J.M.: Humans can continuously optimize energetic cost during walking. Curr. Biol. 25, 2452–2456 (2015)

    Article  Google Scholar 

  38. Maurice, P., Hogan, N., Sternad, D.: Predictability, force, and (anti)resonance in complex object control. J. Neurophysiol. 120, 765–780 (2018)

    Article  Google Scholar 

  39. Vygotsky, L.S.: Mind and Society: The Development of Higher Psychological Processes. Harvard University Press, Cambridge (1978)

    Google Scholar 

  40. Johnston, J., Sottilare, R., Sinatra, A.M., Shawn Burke, C. (eds.): Building Intelligent Tutoring Systems for Teams. Emerald Publishing Limited (2018)

    Google Scholar 

  41. Gorman, J.C., Cooke, N.J., Amazeen, P.G.: Training adaptive teams. Hum. Factors 52, 295–307 (2010)

    Article  Google Scholar 

  42. Mörtl, A., Lorenz, T., Hirche, S.: Rhythm patterns interaction - synchronization behavior for human-robot joint action. PLoS ONE 9, e95195 (2014)

    Article  Google Scholar 

  43. Lorenz, T., Weiss, A., Hirche, S.: Synchrony and reciprocity: key mechanisms for social companion robots in therapy and care. Int. J. Soc. Robot. 8, 125–143 (2016)

    Article  Google Scholar 

  44. Słowiński, P., et al.: Dynamic similarity promotes interpersonal coordination in joint action. J. R. Soc. Interface 13, 20151093 (2016)

    Article  Google Scholar 

  45. Iqbal, T., Riek, L.D.: Human-robot teaming: approaches from joint action and dynamical systems. In: Goswami, A., Vadakkepat, P. (eds.) Humanoid Robotics: A Reference, pp. 2293–2312. Springer, Dordrecht (2019)

    Chapter  Google Scholar 

  46. Słowiński, P., et al.: Unravelling socio-motor biomarkers in schizophrenia. NPJ Schizophr 3, 8 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

NIH Grant R01GM105045, ARC Future Fellowship (Richardson, FT180100447) and the University of Cincinnati Research Council supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Nalepka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nalepka, P., Kallen, R.W., Chemero, A., Saltzman, E., Richardson, M.J. (2019). Practical Applications of Multiagent Shepherding for Human-Machine Interaction. In: Demazeau, Y., Matson, E., Corchado, J., De la Prieta, F. (eds) Advances in Practical Applications of Survivable Agents and Multi-Agent Systems: The PAAMS Collection. PAAMS 2019. Lecture Notes in Computer Science(), vol 11523. Springer, Cham. https://doi.org/10.1007/978-3-030-24209-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24209-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24208-4

  • Online ISBN: 978-3-030-24209-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics