Skip to main content

DRMaxSAT with MaxHS: First Contact

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2019 (SAT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11628))

Abstract

The proof system of Dual-Rail MaxSAT (DRMaxSAT) was recently shown to be capable of efficiently refuting families of formulas that are well-known to be hard for resolution, concretely when the MaxSAT solving approach is either MaxSAT resolution or core-guided algorithms. Moreover, DRMaxSAT based on MaxSAT resolution was shown to be stronger than general resolution. Nevertheless, existing experimental evidence indicates that the use of MaxSAT algorithms based on the computation of minimum hitting sets (MHSes), i.e. MaxHS-like algorithms, are as effective, and often more effective, than core-guided algorithms and algorithms based on MaxSAT resolution. This paper investigates the use of MaxHS-like algorithms in the DRMaxSAT proof system. Concretely, the paper proves that the propositional encoding of the pigenonhole and doubled pigenonhole principles have polynomial time refutations when the DRMaxSAT proof system uses a MaxHS-like algorithm.

This work was supported by FCT grants ABSOLV (PTDC/CCI-COM/28986/2017), FaultLocker (PTDC/CCI-COM/29300/2017), SAFETY (SFRH/BPD/120315/2016), and SAMPLE (CEECIND/04549/2017); grant TIN2016-76573-C2-2-P (TASSAT 3); and Simons Foundation grant 578919.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Despite ongoing efforts, and with the exception of families of problem instances known to be hard for resolution, the performance of implementations of proof systems stronger than resolution is still far from what CDCL SAT solvers achieve in practice.

  2. 2.

    The plots show the performance of the competitors for a specifically constructed PHP and 2PHP formulas, with \({\mathcal {P}}\) clauses being disabled. (The notation and rationale will be explained below. A reader can also refer to [9, 20] for details.)

  3. 3.

    Some of the (2)PHP instances are skipped in the plots. Please, refer to [9, 20] for details.

References

  1. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)

    Article  MathSciNet  Google Scholar 

  2. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause learning SAT solvers. In: AAAI (2010)

    Google Scholar 

  3. Bacchus, F., Hyttinen, A., Järvisalo, M., Saikko, P.: Reduced cost fixing in MaxSAT. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 641–651. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_41

    Chapter  Google Scholar 

  4. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2–3), 59–6 (2010)

    Google Scholar 

  5. Biere, A.: Lingeling, plingeling and treengeling entering the SAT competition 2013. In: Balint, A., Belov, A., Heule, M., Järvisalo, M. (eds.) Proceedings of SAT Competition 2013, Department of Computer Science Series of Publications B, vol. B-2013-1, pp. 51–52. University of Helsinki (2013)

    Google Scholar 

  6. Biere, A.: Lingeling essentials, a tutorial on design and implementation aspects of the SAT solver lingeling. In: Pragmatics of SAT workshop, p. 88 (2014)

    Google Scholar 

  7. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

    Google Scholar 

  8. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)

    Article  Google Scholar 

  9. Bonet, M.L., Buss, S., Ignatiev, A., Marques-Silva, J., Morgado, A.: Maxsat resolution with the dual rail encoding. In: AAAI. pp. 6565–6572 (2018)

    Google Scholar 

  10. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artif. Intell. 171(8–9), 606–618 (2007)

    Article  MathSciNet  Google Scholar 

  11. Bryant, R.E., Beatty, D.L., Brace, K.S., Cho, K., Sheffler, T.J.: COSMOS: a compiled simulator for MOS circuits. In: DAC, pp. 9–16 (1987)

    Google Scholar 

  12. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1), 36–50 (1979)

    Article  MathSciNet  Google Scholar 

  13. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_19

    Chapter  Google Scholar 

  14. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_13

    Chapter  MATH  Google Scholar 

  15. Davies, J., Bacchus, F.: Postponing optimization to speed Up MAXSAT solving. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_21

    Chapter  Google Scholar 

  16. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT 2(1–4), 1–26 (2006)

    MATH  Google Scholar 

  17. Elffers, J., Nordström, J.: Divide and conquer: towards faster pseudo-boolean solving. In: IJCAI, pp. 1291–1299 (2018). www.ijcai.org

  18. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_25

    Chapter  Google Scholar 

  19. Huang, J.: Extended clause learning. Artif. Intell. 174(15), 1277–1284 (2010)

    Article  MathSciNet  Google Scholar 

  20. Ignatiev, A., Morgado, A., Marques-Silva, J.: On Tackling the limits of resolution in SAT solving. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 164–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_11

    Chapter  MATH  Google Scholar 

  21. Kiesl, B., Rebola-Pardo, A., Heule, M.J.H.: Extended resolution simulates DRAT. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 516–531. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_34

    Chapter  Google Scholar 

  22. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-SAT solver. JSAT 8(1/2), 95–100 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving. Artif. Intell. 172(2–3), 204–233 (2008)

    Article  MathSciNet  Google Scholar 

  24. Li, C.M., Manyà, F.: MaxSAT. In: Biere et al. [7], pp. 613–631

    Google Scholar 

  25. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability CoRR abs/0712.1097 (2007)

    Google Scholar 

  26. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_39

    Chapter  Google Scholar 

  27. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver,. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_33

    Chapter  Google Scholar 

  28. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_41

    Chapter  Google Scholar 

  29. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534 (2013)

    Article  MathSciNet  Google Scholar 

  30. Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: robust core-guided MaxSAT solving. JSAT 9, 129–134 (2015)

    MathSciNet  Google Scholar 

  31. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: AAAI, pp. 2717–2723 (2014)

    Google Scholar 

  32. Palopoli, L., Pirri, F., Pizzuti, C.: Algorithms for selective enumeration of prime implicants. Artif. Intell. 111(1–2), 41–72 (1999)

    Article  MathSciNet  Google Scholar 

  33. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MathSciNet  Google Scholar 

  34. Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_34

    Chapter  MATH  Google Scholar 

  35. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_73

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Morgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morgado, A., Ignatiev, A., Bonet, M.L., Marques-Silva, J., Buss, S. (2019). DRMaxSAT with MaxHS: First Contact. In: Janota, M., Lynce, I. (eds) Theory and Applications of Satisfiability Testing – SAT 2019. SAT 2019. Lecture Notes in Computer Science(), vol 11628. Springer, Cham. https://doi.org/10.1007/978-3-030-24258-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24258-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24257-2

  • Online ISBN: 978-3-030-24258-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics