Skip to main content

Proof Complexity of Fragments of Long-Distance Q-Resolution

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2019 (SAT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11628))

  • 1268 Accesses

Abstract

Q-resolution is perhaps the most well-studied proof system for Quantified Boolean Formulas (QBFs). Its proof complexity is by now well understood, and several general proof size lower bound techniques have been developed. The situation is quite different for long-distance Q-resolution (LDQ-resolution). While lower bounds on LDQ-resolution proof size have been established for specific families of formulas, we lack semantically grounded lower bound techniques for LDQ-resolution.

In this work, we study restrictions of LDQ-resolution. We show that a specific lower bound technique based on bounded-depth strategy extraction does not work even for reductionless Q-resolution by presenting short proofs of the QParity formulas. Reductionless Q-resolution is a variant of LDQ-resolution that admits merging but no universal reduction. We also prove a lower bound on the proof size of the completion principle formulas in reductionless Q-resolution. This shows that two natural fragments of LDQ-resolution are incomparable: Q-resolution, which allows universal reductions but no merging, and reductionless Q-resolution, which allows merging but no universal reductions. Finally, we develop semantically grounded lower bound techniques for fragments of LDQ-resolution, specifically tree-like LDQ-resolution and regular reductionless Q-resolution.

This research was partially supported by FWF grants P27721 and W1255-N23.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    At least without techniques like dependency learning [25].

References

  1. Balabanov, V., Roland Jiang, J.-H.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)

    Article  Google Scholar 

  2. Balabanov, V., Jiang, J.H.R., Janota, M., Widl, M.: Efficient extraction of QBF (counter) models from long-distance resolution proofs. In: Bonet, B., Koenig, S., (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–30 January 2015, Austin, Texas, USA., pp. 3694–3701. AAAI Press (2015)

    Google Scholar 

  3. Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_12

    Chapter  MATH  Google Scholar 

  4. Beyersdorff, O., Blinkhorn, J., Hinde, L.: Size, cost, and capacity: a semantic technique for hard random QBFs. Log. Methods Comput. Sci. 15(1), 13:1–13:39 (2019)

    Google Scholar 

  5. Beyersdorff, O., Blinkhorn, J., Mahajan, M.: Building strategies into QBF proofs. In: 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, 13–16 March (2019), Berlin, Germany, pp. 14:1–14:18 (2019)

    Google Scholar 

  6. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, 4–7 March 2015, Garching, Germany, vol. 30 of LIPIcs, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

    Google Scholar 

  7. Biere, A.: Resolve and expand. In: Proceedings of SAT 2004 Seventh International Conference on Theory and Applications of Satisfiability Testing, 10–13 May 2004, Vancouver, BC, Canada, pp. 59–70 (2004)

    Google Scholar 

  8. Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds) Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pp. 457–481. IOS Press (2009)

    Google Scholar 

  9. Bjørner, N., Janota, M., Klieber, W.: On conflicts and strategies in QBF. In: Fehnker, A., McIver, A., Sutcliffe, G., Voronkov, A., (eds.) 20th International Conferences on Logic for Programming, Artificial Intelligence and Reasoning - Short Presentations, EPiC Series in Computing, LPAR 2015, Suva, Fiji, 24–28 November 2015, vol. 35 pp. 28–41. EasyChair (2015)

    Google Scholar 

  10. Bollig, B., Wegener, I.: A very simple function that requires exponential size read-once branching programs. Inf. Process. Lett. 66(2), 53–57 (1998)

    Article  MathSciNet  Google Scholar 

  11. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate Quantified Boolean Formulae and its experimental evaluation. J. Automat. Reason. 28(2), 101–142 (2002)

    Article  MathSciNet  Google Scholar 

  12. Chew, L.N.: QBF proof complexity. Ph.D. thesis, University of Leeds, UK (2017)

    Google Scholar 

  13. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 291–308. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_21

    Chapter  MATH  Google Scholar 

  14. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res. 26, 371–416 (2006)

    Article  MathSciNet  Google Scholar 

  15. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Handbook of Knowledge Representation, volume 3 of Foundations of Artificial Intelligence, pp. 89–134. Elsevier (2008)

    Google Scholar 

  16. Håstad, J.: Computational Limitations of Small-depth Circuits. MIT Press, Cambridge, MA, USA (1987)

    Google Scholar 

  17. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_10

    Chapter  Google Scholar 

  18. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 325–331. AAAI Press (2015)

    Google Scholar 

  19. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci. 577, 25–42 (2015)

    Article  MathSciNet  Google Scholar 

  20. Janota, M.: On Q-resolution and CDCL QBF solving. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 402–418. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_25

    Chapter  MATH  Google Scholar 

  21. Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)

    Article  MathSciNet  Google Scholar 

  22. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_12

    Chapter  Google Scholar 

  23. Lonsing, F., Egly, U., Van Gelder, A.: Efficient clause learning for quantified boolean formulas via QBF pseudo unit propagation. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 100–115. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_9

    Chapter  Google Scholar 

  24. Nechiporuk, I.: A Boolean function. Dokl. Akad. Nauk SSSR 169(4), 765–766 (1966)

    MathSciNet  MATH  Google Scholar 

  25. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. J. Artif. Intell. Res. 65, 181–208 (2019)

    Article  Google Scholar 

  26. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Kaivola, R., Wahl, R. (eds.) Formal Methods in Computer-Aided Design, FMCAD 2015, pp. 136–143. IEEE Computer Society (2015)

    Google Scholar 

  27. Rintanen, J.: Planning and SAT. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pp. 483–504. IOS Press (2009)

    Google Scholar 

  28. Ronald, L.: Rivest. Learning decision lists. Mach. Learn. 2(3), 229–246 (1987)

    Google Scholar 

  29. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proceedings of Theory of Computing, pp. 1–9. ACM (1973)

    Google Scholar 

  30. Tentrup, L.: Non-prenex QBF solving using abstraction. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 393–401. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_24

    Chapter  Google Scholar 

  31. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning. Classical Papers on Computer Science, pp. 466–483. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-81955-1_28. Zap. Nauchn. Sem. Leningrad Otd. Mat. Inst. Akad. Nauk SSSR, 8:23–41, 1968. Russian. English translation

    Chapter  Google Scholar 

  32. van Gelder, A.: Contributions to the theory of practical quantified Boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_47

    Chapter  MATH  Google Scholar 

  33. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)

    Article  Google Scholar 

  34. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM (2000)

    Google Scholar 

  35. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: Pileggi, L.T., Kuehlmann, A. (eds.) Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided Design, ICCAD 2002, San Jose, California, USA, 10–14 November 2002, pp. 442–449. ACM/IEEE Computer Society (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Slivovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peitl, T., Slivovsky, F., Szeider, S. (2019). Proof Complexity of Fragments of Long-Distance Q-Resolution. In: Janota, M., Lynce, I. (eds) Theory and Applications of Satisfiability Testing – SAT 2019. SAT 2019. Lecture Notes in Computer Science(), vol 11628. Springer, Cham. https://doi.org/10.1007/978-3-030-24258-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24258-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24257-2

  • Online ISBN: 978-3-030-24258-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics