Abstract
Q-resolution is perhaps the most well-studied proof system for Quantified Boolean Formulas (QBFs). Its proof complexity is by now well understood, and several general proof size lower bound techniques have been developed. The situation is quite different for long-distance Q-resolution (LDQ-resolution). While lower bounds on LDQ-resolution proof size have been established for specific families of formulas, we lack semantically grounded lower bound techniques for LDQ-resolution.
In this work, we study restrictions of LDQ-resolution. We show that a specific lower bound technique based on bounded-depth strategy extraction does not work even for reductionless Q-resolution by presenting short proofs of the QParity formulas. Reductionless Q-resolution is a variant of LDQ-resolution that admits merging but no universal reduction. We also prove a lower bound on the proof size of the completion principle formulas in reductionless Q-resolution. This shows that two natural fragments of LDQ-resolution are incomparable: Q-resolution, which allows universal reductions but no merging, and reductionless Q-resolution, which allows merging but no universal reductions. Finally, we develop semantically grounded lower bound techniques for fragments of LDQ-resolution, specifically tree-like LDQ-resolution and regular reductionless Q-resolution.
This research was partially supported by FWF grants P27721 and W1255-N23.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
At least without techniques like dependency learning [25].
References
Balabanov, V., Roland Jiang, J.-H.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)
Balabanov, V., Jiang, J.H.R., Janota, M., Widl, M.: Efficient extraction of QBF (counter) models from long-distance resolution proofs. In: Bonet, B., Koenig, S., (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–30 January 2015, Austin, Texas, USA., pp. 3694–3701. AAAI Press (2015)
Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_12
Beyersdorff, O., Blinkhorn, J., Hinde, L.: Size, cost, and capacity: a semantic technique for hard random QBFs. Log. Methods Comput. Sci. 15(1), 13:1–13:39 (2019)
Beyersdorff, O., Blinkhorn, J., Mahajan, M.: Building strategies into QBF proofs. In: 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, 13–16 March (2019), Berlin, Germany, pp. 14:1–14:18 (2019)
Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, 4–7 March 2015, Garching, Germany, vol. 30 of LIPIcs, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)
Biere, A.: Resolve and expand. In: Proceedings of SAT 2004 Seventh International Conference on Theory and Applications of Satisfiability Testing, 10–13 May 2004, Vancouver, BC, Canada, pp. 59–70 (2004)
Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds) Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pp. 457–481. IOS Press (2009)
Bjørner, N., Janota, M., Klieber, W.: On conflicts and strategies in QBF. In: Fehnker, A., McIver, A., Sutcliffe, G., Voronkov, A., (eds.) 20th International Conferences on Logic for Programming, Artificial Intelligence and Reasoning - Short Presentations, EPiC Series in Computing, LPAR 2015, Suva, Fiji, 24–28 November 2015, vol. 35 pp. 28–41. EasyChair (2015)
Bollig, B., Wegener, I.: A very simple function that requires exponential size read-once branching programs. Inf. Process. Lett. 66(2), 53–57 (1998)
Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate Quantified Boolean Formulae and its experimental evaluation. J. Automat. Reason. 28(2), 101–142 (2002)
Chew, L.N.: QBF proof complexity. Ph.D. thesis, University of Leeds, UK (2017)
Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 291–308. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_21
Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res. 26, 371–416 (2006)
Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Handbook of Knowledge Representation, volume 3 of Foundations of Artificial Intelligence, pp. 89–134. Elsevier (2008)
Håstad, J.: Computational Limitations of Small-depth Circuits. MIT Press, Cambridge, MA, USA (1987)
Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_10
Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 325–331. AAAI Press (2015)
Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci. 577, 25–42 (2015)
Janota, M.: On Q-resolution and CDCL QBF solving. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 402–418. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_25
Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)
Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_12
Lonsing, F., Egly, U., Van Gelder, A.: Efficient clause learning for quantified boolean formulas via QBF pseudo unit propagation. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 100–115. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_9
Nechiporuk, I.: A Boolean function. Dokl. Akad. Nauk SSSR 169(4), 765–766 (1966)
Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. J. Artif. Intell. Res. 65, 181–208 (2019)
Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Kaivola, R., Wahl, R. (eds.) Formal Methods in Computer-Aided Design, FMCAD 2015, pp. 136–143. IEEE Computer Society (2015)
Rintanen, J.: Planning and SAT. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pp. 483–504. IOS Press (2009)
Ronald, L.: Rivest. Learning decision lists. Mach. Learn. 2(3), 229–246 (1987)
Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proceedings of Theory of Computing, pp. 1–9. ACM (1973)
Tentrup, L.: Non-prenex QBF solving using abstraction. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 393–401. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_24
Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning. Classical Papers on Computer Science, pp. 466–483. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-81955-1_28. Zap. Nauchn. Sem. Leningrad Otd. Mat. Inst. Akad. Nauk SSSR, 8:23–41, 1968. Russian. English translation
van Gelder, A.: Contributions to the theory of practical quantified Boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_47
Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)
Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM (2000)
Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: Pileggi, L.T., Kuehlmann, A. (eds.) Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided Design, ICCAD 2002, San Jose, California, USA, 10–14 November 2002, pp. 442–449. ACM/IEEE Computer Society (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Peitl, T., Slivovsky, F., Szeider, S. (2019). Proof Complexity of Fragments of Long-Distance Q-Resolution. In: Janota, M., Lynce, I. (eds) Theory and Applications of Satisfiability Testing – SAT 2019. SAT 2019. Lecture Notes in Computer Science(), vol 11628. Springer, Cham. https://doi.org/10.1007/978-3-030-24258-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-24258-9_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24257-2
Online ISBN: 978-3-030-24258-9
eBook Packages: Computer ScienceComputer Science (R0)