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Abstract. The Random Satisfiability problem has been intensively stud-
ied for decades. For a number of reasons the focus of this study has mostly
been on the model, in which instances are sampled uniformly at random
from a set of formulas satisfying some clear conditions, such as fixed den-
sity or the probability of a clause to occur. However, some non-uniform
distributions are also of considerable interest. In this paper we consider
Random 2-SAT problems, in which instances are sampled from a wide
range of non-uniform distributions.
The model of random SAT we choose is the so-called configuration model,
given by a distribution ξ for the degree (or the number of occurrences) of
each variable. Then to generate a formula the degree of each variable is
sampled from ξ, generating several clones of the variable. Then 2-clauses
are created by choosing a random paritioning into 2-element sets on the
set of clones and assigning the polarity of literals at random.
Here we consider the random 2-SAT problem in the configuration model
for power-law-like distributions ξ. More precisely, we assume that ξ is
such that its right tail Fξ(x) satisfies the conditions Wℓ−α ≤ Fξ(ℓ) ≤
V ℓ−α for some constants V,W . The main goal is to study the satisfia-
bility threshold phenomenon depending on the parameters α, V,W . We
show that a satisfiability threshold exists and is determined by a simple
relation between the first and second moments of ξ.

Keywords: Satisfiability, power law, phase transition

1 Introduction

The Random Satisfiability problem (Random SAT) and its special cases Ran-
dom k-SAT as a model of ‘typical case’ instances of SAT has been intensively
studied for decades. Apart from algorithmic questions related to the Random
SAT, much attention has been paid to such problems as satisfiability thresholds
and the structure of the solution space. The most widely studied model of the
Random k-SAT is the uniform one parametrized by the (expected) density or
clause-to-variable ratio ̺ of input formulas. Friedgut in [26] proved that depend-
ing on the parameter ̺ (and possibly the number of variables) Random k-SAT
exhibits a sharp satisfiability threshold: a formula of density less than a certain
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value ̺0 (or possibly ̺0(n)) is satisfiable with high probability, and if the density
is greater than ̺0, it is unsatisfiable with high probability. Moreover, a recent
work of Friedrich and Rothenberger [28], which may be regarded as an exten-
sion of Fridgut’s result to non-uniform random SAT instances, shows that if a
distribution of variable’s occurence in random formulas satisfies some criteria,
then such formulas must undergo a sharp satisfiability threshold.

Hence, an impressive line of research aims at locating the satisfiability thresh-
old for each random generating model. This includes more and more sophisti-
cated methods of algorithms analysis [1,17,18,22] and applications of the second
moment method [2] to find lower bounds, and a variety of probabilistic and proof
complexity tools to obtain upper bounds [23,33,24]. In the case of sufficiently
large k the exact location of the satisfiability threshold was identified by Ding,
Sly and Sun [22]. The satisfiability threshold and the structure of random k-
CNFs received special attention for small values of k, see [15,40,30] for k = 2,
and [21,31,33] for k = 3.

The satisfiability threshold phenomenon turned out to be closely connected
with algorithmic properties of the Random SAT, as well as with the structure of
its solution space. Experimental and theoretical results [39,19] demonstrate that
finding a solution or proving unsatisfiability is hardest around the satisfiability
threshold. The geometry of the solution space also exhibits phase transitions not
far from the satisfiability threshold, related to various clustering properties [35].
This phenomenon has been exploited by applications of methods from statistical
physics that resulted in some of the most efficient algorithms for Random SAT
with densities around the satisfiability threshold [36,14].

Random k-SAT can be formulated using one of the three models whose sta-
tistical properties are very similar. In the model with fixed density ̺, one fixes
n distinct propositional variables v1, . . . , vn and then chooses ̺n k-clauses uni-
formly at random [25,39]. Alternatively, for selected variables every possible
k-clause is included with probability tuned up so that the expected number of
clauses equals ̺n. Finally, Kim [32] showed that one can also use the config-
uration model, which he called Poisson Cloning model. In this model for each
variable vi we first select a positive integer di accordingly to the Poisson distri-
bution with expectation k̺, the degree of the variable. Then we create di clones
of variable vi, and choose (d1 + · · · + dn)/k random k-element subsets of the
set of clones, then converting them into clauses randomly. The three models are
largely equivalent and can be used whichever suits better to the task at hand.

The configuration model opens up a possibility for a wide range of differ-
ent distributions of k-CNFs arising from different degree distributions. Starting
with any random variable ξ that takes positive integer values one obtains a dis-
tribution Φ(ξ) on k-CNFs as above using ξ in place of the Poisson distribution.
Note that ξ may depend on n, the number of variables, and even be different for
different variables. One ‘extreme’ case of such a distribution is Poisson Cloning
described above. Another case is studied by Cooper, Frieze, and Sorkin [20]. In
their case each variable of a 2-SAT instance has a prescribed degree, which can
be viewed as assigning a degree to every variable according to a random variable
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that only takes one value. We will be often returning to that paper, as our cri-
terion for a satisfiability threshold is a generalization of that in [20]. Boufkhad
et al. [13] considered another case of this kind — regular Random k-SAT.

In this paper we consider Random 2-SAT in the configuration model given by
distribution Φ(ξ), where ξ is distributed according to the power law distribution
in the following sense. Let Fξ(ℓ) = Pr[ξ ≥ ℓ] denote the tail function of a positive
integer valued random variable ξ. We say that ξ is distributed according to the
power law with parameter α if there exist constants V,W such that

Wℓ−α ≤ Fξ(ℓ) ≤ V ℓ−α. (1)

Power law type distributions have received much attention. They have been
widely observed in natural phenomena [37,16], as well as in more artificial struc-
tures such as networks of various kinds [10]. Apart from the configuration model,
graphs (and therefore 2-CNFs) whose degree sequences are distributed accord-
ingly to a power law of some kind can also be generated in a number of ways.
These include preferential attachment [3,10,12,11], hyperbolic geometry [34], and
others [5,6]. Although the graphs resulting from all such processes satisfy the
power law distributions of their degrees, other properties can be very different.
We will encounter the same phenomenon in this paper.

The approach most closely related to this paper was suggested by Ansotegui
et al. [5,6]. Given the number of variables n, the number of clauses m, and a
parameter β, the first step in their construction is to create m k-clauses without
naming the variables. Then for every variable-place X in every clause, X is
assigned to be one of the variables v1, . . . , vn according to the distribution

Pr[X = vi, β, n] =
i−β

∑n
j=1 j

−β
.

Ansotegui et al. argue that this model often well matches the experimental results
on industrial instances, see also [4,29,8]. Interesting to note that although the
model studied in these papers differ from the configuration model, it exhibits the
same criterion of unsatisfiability EK2 > 3EK, where K is the r.v. that governs
the number of times a variable appears in 2-SAT formula φ [7].

The satisfiability threshold of this model has been studied by Friedrich et
al. in [27]. Since the model has two parameters, β and r = m/n, the resulting
picture is complicated. Friedrich et al. proved that a random CNF is unsatisfiable
with high probability if r is large enough (although constant), and if β < 2k−1

k−1 .

If β ≥ 2k−1
k−1 , the formula is satisfiable with high probability provided r is smaller

than a certain constant. The unsatisfiability results in [27] are mostly proved
using the local structure of a formula.

In this paper we aim at a similar result for Random 2-SAT in the config-
uration model. Although the configuration model has only one parameter, the
overall picture is somewhat more intricate, because there are more reasons for
unsatisfiability than just the local structure of a formula. We show that for 2-
SAT the parameter α from the tail condition (1) is what decides the satisfiability
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of such CNF. The main result of this paper is a satisfiability threshold given by
the following

Theorem 1. Let φ be a random 2-CNF in the configuration model, such that
the number of occurrences of each variable in φ is an independent copy of the
random variable ξ, satisfying the tail condition (1) for some α. Then for n → ∞

Pr[φ is satisfiable ] =











0, when 0 < α < 2

0, when α = 2 or Eξ2 > 3Eξ,

1, when Eξ2 < 3Eξ.

In the first case of Theorem 1 we show that φ is unsatisfiable with high
probability due to very local structure of the formula, such as the existence of
variables of sufficiently high degree. Moreover, same structures persist with high
probability in k-CNF formulas for any k ≥ 2 obtained from the configuration
model, when α < k

k−1 .
In the remaining cases we apply the approach of Cooper, Frieze, and Sorkin

[20]. It makes use of the structural characterization of unsatisfiable 2-CNFs: a
2-CNF is unsatisfiable if and only if it contains so-called contradictory paths.
If Eξ2 < 3Eξ we prove that w.h.p. formula φ does not have long paths, and
contradictory paths are unlikely to form. If Eξ2 > 3Eξ, we use the analysis
of the dynamics of the growth of φ to show that contradictory paths appear
w.h.p. However, the original method by Cooper et al. only works with strong
restrictions on the maximal degree of variables that are not affordable in our
case, and so it requires substantial modifications.

2 Notation and preliminaries

We use the standard terminology and notation of variables, positive and negative
literals, clauses and 2-CNFs, and degrees of variables. The degree of variable v
will be denoted by deg(v), or when our CNF contains only variables v1, . . . , vn,
we use di = deg(vi). By C(φ) we denote the set of clauses in φ, while by V (φ)
and L(φ) we denote the sets of variables and literals of φ respectively. Let d+i
denote the number of occurrences of vi as a positive literal (or the number of
the literal vi), and let d−i denote the number of occurrences of the literal v̄i.

2.1 Configuration model

We describe the configuration model for k-CNFs, but will only use it for k = 2,
see also [32]. In the configuration model of k-CNFs with n variables v1, . . . , vn
we are given a positive integer-valued random variable (r.v.) ξ from which we
sample independently n integers {di}

n
i=1. Then di is the degree of vi, that is,

the number of occurrences of vi in the resulting formula φ. Each occurrence of
vi in φ we call a clone of vi. Hence, di is the number of clones of vi. Then we
sample k-element sets of clones from the set of all clones without replacement.
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Finally, every such subset is converted into a clause by choosing the polarity of
every clone in it uniformly at random. If the total number of clones is not a
multiple of k, we discard the set and repeat the procedure. Algorithm 1 gives a
more precise description of the process. We will sometimes say that a clone p is
associated with variable v if p is a clone of v. In a similar sense we will say a
clone associated with a literal if we need to emphasize the polarity of the clone.

Algorithm 1 Configuration Model Ck
n(ξ)

1: procedure SampleCNF(n, k, ξ)
2: Form a sequence of n numbers {di}

n
i=1 each sampled independently from ξ

3: if Sn :=
∑n

i=1
di is not a multiple of k then

4: discard the sequence, and go to step 2
5: end if

6: Otherwise, introduce multi-set S ←
n⋃

i=1

{vi, vi, . . . , vi}
︸ ︷︷ ︸

di times

7: Let φ← ∅
8: while S 6= ∅ do
9: Pick u.a.r. k elements {v1, v2, . . . , vk} from S without replacement

10: Let C ← {v1, v2, . . . , vk}
11: S ← S − C

12: Negate each element in C u.a.r with probability 1/2
13: φ← φ ∪ C

14: end while
15: return φ

16: end procedure

We will denote a random formula φ obtained from Ck
n(R) by φ ∼ Ck

n(R).
Clearly, formulas φ ∼ Ck

n(R) are defined over a set of n Boolean variables,

2.2 Power law distributions

We focus our attention on the configuration model Ck
n(ξ), in which every variable

is an i.i.d. copy of the random variable ξ having power-law distribution. In this
paper we define such distributions through the properties of their tail functions.
If ξ is an integer-valued r.v., its tail function is defined to be Fξ(ℓ) = Pr[ξ ≥ ℓ],
where ℓ ≥ 1.

Definition 1. An integer-valued positive r.v. ξ has power-law probability distri-
bution, if Fξ(ℓ) = Θ (ℓ−α) , where α > 0. We denote this fact as ξ ∼ P (α).

Clearly, if ξ ∼ P (α), then there exist constants V,W > 0, such that W ℓ−α ≤
Fξ(ℓ) ≤ V ℓ−α, for every ℓ ≥ 1.

The existence of the moments of ξ ∼ P (α) depends only on α.

Lemma 1. Let ξ ∼ P (α). Then Eξm < ∞ iff 0 < m < α.



6 O.Omelchenko and A.Bulatov

Proof. From the definition of m-th moment of a strictly positive r.v. X , we
have

EXm =
∑

ℓ≥1

km Pr [X = ℓ]

=
∑

ℓ≥1

km
(

Pr [X ≥ ℓ]− Pr [X ≥ ℓ− 1]
)

=
∑

ℓ≥1

ℓm Pr [X ≥ ℓ]−
∑

ℓ≥2

(ℓ− 1)m Pr [X ≥ ℓ]

= Pr [X ≥ 1] +
∑

ℓ≥2

ℓm Pr [X ≥ ℓ]−
∑

ℓ≥2

(ℓ− 1)m Pr [X ≥ ℓ]

= 1 +
∑

ℓ≥2

(

ℓm − (ℓ − 1)m
)

Pr [X ≥ ℓ]

=
∑

ℓ≥1

(

ℓm − (ℓ − 1)m
)

Pr [X ≥ ℓ]

=
∑

ℓ≥1

(

ℓm −

m
∑

i=0

(

m

i

)

ℓm−i(−1)i
)

Pr [X ≥ ℓ]

=
∑

ℓ≥1

m
∑

i=1

(

m

i

)

ℓm−i(−1)i+1 Pr [X ≥ ℓ]

=

m
∑

i=1

(

m

i

)

(−1)i+1
∑

ℓ≥1

ℓm−i Pr [X ≥ ℓ] .

However, since X ∼ P (α), then for any ℓ ≥ 1

Pr[X ≥ ℓ] = FX(ℓ) ≤ V ℓ−α.

Therefore,

EXm =

m
∑

i=1

(

m

i

)

(−1)i+1
∑

ℓ≥1

ℓm−i Pr [X ≥ ℓ]

≤

m
∑

i=1

(

m

i

)

(−1)i+1
∑

ℓ≥1

ℓm−iV ℓ−α

= V
m
∑

i=1

(

m

i

)

(−1)i+1
∑

ℓ≥1

ℓm−i−α,

which is finite iff 0 < m < α, and the result follows. �

We will write Eξm = ∞ when the m-th moment of some r.v. ξ is not finite
or does not exist. We will have to deal with cases when the second or even first
moment of ξ does not exist.
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Nevertheless, we can obtain good bounds on useful quantities formed from
such variables with a good level of confidence, despite the absence of expectation
or variance. One such quantity is the sum of independent variables drawn from
P (α): Sn =

∑n
i=1 ξi, where ξi ∼ P (α). Note that ξi’s are not required to be

identically distributed. They can come from different distributions, as long as
their right tail can be bounded with some power-law functions with exponent α.
But we do require their independence.

The next two theorems provide bounds on the values of Sn, depending on α
in a slightly more general case of r.vs. admitting negative values.

Theorem 2 (Corollary 1 from [38]). Let Sn =
∑n

i=1 ξi, where ξi’s are inde-
pendent integer-valued random variables, with

Pr [ξi ≥ ℓ] ≤ V ℓ−α, and Pr [ξi ≤ −ℓ] ≤ V ℓ−α,

where V > 0 and 0 < α ≤ 1 are constants. Then w.h.p. Sn ≤ C n
1
α , where C > 0

is some constant.

As for the second theorem, we deal with a similar sum of random variables,
but each variable’s tail can be majorized with a power-law function with ex-
ponent α > 1. Then, as it follows from Lemma 1, such variables have finite
expectation, and due to the linearity of expectation, the sum itself has well
defined mean value.

Theorem 3 (Corollary 5 from [38]). Let Sn =
∑n

i=1 ξi, where ξi’s are inde-
pendent integer-valued random variables, with

Pr [ξi ≥ ℓ] ≤ V ℓ−α, and Pr [ξi ≤ −ℓ] ≤ V ℓ−α,

where V > 0 and α > 1 are constants. Then w.h.p. Sn =
∑n

i=1 Eξi + o(n).

Hence, as the theorem states, when ξi’s are independent r.vs. with power-law
boundable tails with tail exponent α > 1, then the sum of such variables does
not deviate much from its expected value.

Note that from now on we will deal with sctrictly positive power-law r.vs.
ξi’s, hence, their expectation (given that it exists) is a positive constant. Then
when α > 1, we have Sn =

∑n
i=1 Eξi + o(n) = (1 + o(1))

∑n
i=1 Eξi.

Another important quantity we need is the maximum, ∆, of the sequence of
n independent random variables (or the maximum degree of a CNF in our case).

Lemma 2. Let ∆ = max (ξ1, ξ2, · · · , ξn), where ξi’s are independent copies of
an r.v. ξ ∼ P (α) with α > 0. Then w.h.p. ∆ ≤ C n1/α, where C > 0 is some
constant.
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Proof. Simple calculation shows that

Pr [∆ ≥ x] = Pr [max (ξ1, ξ2, · · · , ξn) ≥ x]

= Pr

[

n
⋃

i=1

{ξi ≥ x}

]

≤

n
∑

i=1

Pr [ξi ≥ x] , by Union bound

=

n
∑

i=1

Pr [ξ ≥ x] , since ξi
d
= ξ

= nFξ(x).

Since ξ ∼ P (α), we have that Fξ(ℓ) ≤ V ℓ−α. Hence,

Pr [∆ ≥ x] ≤ nFξ(x) ≤ nV x−α.

Then if ∆ ≥ n1/α+ǫ for any ǫ > 0, we obtain

Pr
[

∆ ≥ n1/α+ǫ
]

≤ V n−αǫ = o(1),

hence, we do not expect to see variables with such large degrees. Thus, we
conclude that ∆ ≤ C n1/α holds w.h.p., and the lemma follows. �

We will also need some bounds on the number of pairs of complementary
clones of a variable vi, that is, the value d+i d

−
i . By the definition of the configu-

ration model

d+i ∼ Bin
(

deg(vi), 1/2
)

and d−i = deg(vi)− d+i ,

where Bin(n, p) is the Binomial distribution with n trials and success probability
p.

Lemma 3. Let ξ be some positive integer-valued r.v., and let d+ ∼ Bin
(

ξ, 1/2
)

,

while d− = ξ − d+. Then

Fd+(ℓ) = Fd−(ℓ) ≤ Fξ(ℓ), and Fd+d−(ℓ) ≤ 2Fξ

(

ℓ1/2
)

.

Proof. Observe that the event {d+ ≥ ℓ} implies {ξ ≥ ℓ}, therefore, {d+ ≥
ℓ} ⊆ {ξ ≥ ℓ}, and as a result

Fd+(ℓ) = Pr
[

d+ ≥ ℓ
]

≤ Pr [ξ ≥ ℓ] = Fξ(ℓ),

and since d+
d
= d−, the first result follows. As for the number of pairs of com-

plementary clones, we have
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Fd+d−(ℓ) = Pr
[

d+d− ≥ ℓ
]

= Pr
[

d+d− ≥ ℓ | d+ ≥ ℓ1/2
]

Pr
[

d+ ≥ ℓ1/2
]

+ Pr
[

d+d− ≥ ℓ | d+ < ℓ1/2
]

Pr
[

d+ < ℓ1/2
]

≤ Pr
[

d+ ≥ ℓ1/2
]

+ Pr
[

d+d− ≥ ℓ | d+ < ℓ1/2
]

≤ Pr
[

d+ ≥ ℓ1/2
]

+ Pr
[

d− ≥ ℓ1/2 | d+ < ℓ1/2
]

. (2)

We have already established that Pr
[

d+ ≥ ℓ1/2
]

≤ Fξ

(

ℓ1/2
)

. As for the
second probability in (2), it is bounded in a similar manner. Since the event
{d− ≥ ℓ1/2 | d+ < ℓ1/2} implies {ξ ≥ ℓ1/2}, it follows

Pr
[

d− ≥ ℓ1/2 | d+ < ℓ1/2
]

≤ Pr
[

ξ ≥ ℓ1/2
]

= Fξ

(

ℓ1/2
)

.

Hence, after combining the two probabilities together, we obtain that

Fd+d−(ℓ) ≤ Pr
[

d+ ≥ ℓ1/2
]

+ Pr
[

d− ≥ ℓ1/2 | d+ < ℓ1/2
]

≤ 2Fξ

(

ℓ1/2
)

,

and the lemma follows. �

Hence, for ξ ∼ P (α), we have

Corollary 1. Let ξ ∼ P (α), where α > 0, be some positive integer-valued r.v.,

and let d+ ∼ Bin
(

ξ, 1/2
)

, while d− = ξ − d+. Then

Fd+(ℓ) = Fd−(ℓ) ≤ V ℓ−α, (3)

Fd+d−(ℓ) ≤ 2V ℓ−α/2. (4)

The expectations of d+ and d− are easy to find: Ed+ = Ed− = Eξ
2 . However,

the expected value of d+d− requires a little more effort.

Lemma 4. Let ξ be some positive integer-valued r.v., and let d+ ∼ Bin
(

ξ, 1/2
)

,

while d− = ξ − d+. Then E [d+d−] = Eξ2−Eξ
4 .
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Proof. From the definition of the expected value, and the way quantities d+

and d− are calculated, it follows that

E
[

d+d−
]

=
∞
∑

ℓ=1

ℓ
∑

d=0

d (ℓ− d) Pr
[

d+ = d | ξ = ℓ
]

Pr [ξ = ℓ]

=

∞
∑

ℓ=1

ℓ
∑

d=0

d (ℓ− d) Pr [Bin(ℓ, 1/2) = d | ξ = ℓ] Pr [ξ = ℓ]

=

∞
∑

ℓ=1

ℓ
∑

d=0

d (ℓ− d)

(

ℓ

d

)

1

2ℓ
Pr [ξ = ℓ]

=

∞
∑

ℓ=1

ℓ
∑

d=0

ℓ d

(

ℓ

d

)

1

2ℓ
Pr [ξ = ℓ]−

∞
∑

ℓ=1

ℓ
∑

d=0

d2
(

ℓ

d

)

1

2ℓ
Pr [ξ = ℓ]

=

∞
∑

ℓ=1

ℓPr [ξ = ℓ]

2ℓ

ℓ
∑

d=0

d

(

ℓ

d

)

−

∞
∑

ℓ=1

Pr [ξ = ℓ]

2ℓ

ℓ
∑

d=0

d2
(

ℓ

d

)

.

Next, we apply two well-known relations

n
∑

j=0

j

(

n

j

)

= n2n−1 and
n
∑

j=0

j2
(

n

j

)

= (n+ n2)2n−2,

to get

E
[

d+d−
]

=
∞
∑

ℓ=1

ℓPr [ξ = ℓ]

2ℓ

ℓ
∑

d=0

d

(

ℓ

d

)

−
∞
∑

ℓ=1

Pr [ξ = ℓ]

2ℓ

ℓ
∑

d=0

d2
(

ℓ

d

)

=

∞
∑

ℓ=1

ℓPr [ξ = ℓ]

2ℓ
· ℓ2ℓ−1 −

∞
∑

ℓ=1

Pr [ξ = ℓ]

2ℓ
· (ℓ+ ℓ2)2ℓ−2

=
1

2

∞
∑

ℓ=1

ℓ2Pr [ξ = ℓ]−
1

4

∞
∑

ℓ=1

ℓPr [ξ = ℓ]−
1

4

∞
∑

ℓ=1

ℓ2 Pr [deg(vi) = d]

=
Eξ2 − Eξ

4
,

and the proof is finished. �

We use Tn =
∑n

i=1 d
+
i d

−
i to denote the total number of pairs of complemen-

tary clones, i.e. the sum of unordered pairs of complementary clones over all n
variables,.

Note, that when α > 2, the r.v. d+i d
−
i has finite expectation due to Lemma 1.

Then by Theorem 3 w.h.p. holds

Tn = (1 + o(1))

n
∑

i=1

E
[

d+i d
−
i

]

.
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We finish this subsection with Azuma-like inequality first appeared in [20],
which will be used in the proofs. Informally, the inequality states that a discrete-
time random walk X =

∑n
i=1 Xi with positive drift, consisting of not necessary

independent steps, each having a right tail, which can be bounded by a power
function with exponent at least 1, is very unlikely to drop much below the ex-
pected level, given n is large enough. Although, the original proof was relying on
the rather artificial step of introducing a sequence of uniformly distributed ran-
dom numbers, we figured out that the same result can be obtained by exploiting
the tower property of expectation.

Lemma 5 (Azuma-like inequality). Let X = X0+
∑t

i=1 Xi be some random
walk, such that X0 ≥ 0 is constant initial value of the process, Xi ≥ −a, where
a > 0 is constant, are bounded from below random variables, not necessary in-
dependent, and such that E[Xi |X1, . . . , Xi−1] ≥ µ > 0 (µ is constant) and
Pr[Xi ≥ ℓ |X1, . . . , Xi−1] ≤ V ℓ−α for every ℓ ≥ 1 and constants V > 0, α > 1.
Then for any 0 < ε < 1

2 , the following inequality holds

Pr [X ≤ εµt] ≤ exp

(

−
t+X0

4 log2 t
µ2

(

1

2
− ε

)2
)

.

Proof. First, let us introduce “truncated” at δ := ⌊logn⌋ versions of the
variables Xi, i.e.

Yi = Xi · 1Xi≤δ.

Then the conditional expectation for the new variables is

E [Yi |X1, . . . , Xi−1] = E [Xi · 1Xi≤δ |X1, . . . , Xi−1]

= E [Xi −Xi · 1Xi>δ |X1, . . . , Xi−1]

= E [Xi |X1, . . . , Xi−1]− E [Xi · 1Xi>δ |X1, . . . , Xi−1]

≥ E [Xi |X1, . . . , Xi−1]− E [Xi · 1Xi≥δ |X1, . . . , Xi−1]

≥ µ− E [Xi · 1Xi≥δ |X1, . . . , Xi−1] ,

since E [Xi |X1, . . . , Xi−1] ≥ µ. Let us denote by Pi [A], where A is some event,
the following function

Pi [A] := Pr [A |X1, . . . , Xi−1] .

Then

E [Yi |X1, . . . , Xi−1] ≥
µ

2
− E [Xi · 1Xi≥δ |X1, . . . , Xi−1]

= µ−

∞
∑

ℓ=δ

ℓPr [Xi = ℓ |X1, . . . , Xi−1]

= µ−

∞
∑

ℓ=δ

ℓPi [Xi = k]
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= µ−
∞
∑

ℓ=δ

ℓ
(

Pi [Xi ≥ ℓ]− Pi [Xi ≥ ℓ+ 1]
)

= µ−
(

∞
∑

ℓ=δ

ℓPi [Xi ≥ ℓ]−

∞
∑

ℓ=δ+1

(ℓ − 1)Pi [Xi ≥ ℓ]
)

= µ− δPi [Xi ≥ δ]−
(

∞
∑

ℓ=δ+1

ℓPi [Xi ≥ ℓ]−

∞
∑

ℓ=δ+1

(ℓ − 1)Pi [Xi ≥ ℓ]
)

= µ− δPi [Xi ≥ δ]−

∞
∑

ℓ=δ+1

Pr [Xi ≥ ℓ |X1, . . . , Xi−1] .

Now recall that Pi [Xi ≥ δ] = Pr [Xi ≥ δ |X1, . . . , Xi−1] ≤ V δ−α. Hence,

E [Yi |X1, . . . , Xi−1] ≥ µ− δPi [Xi ≥ δ]−
∞
∑

ℓ=δ+1

Pr [Xi ≥ ℓ |X1, . . . , Xi−1]

≥ µ− V δ1−α − V

∞
∑

ℓ=δ+1

ℓ−α

≥ µ− V δ1−α − V

∞
∫

δ

x−α dx

= µ− V δ1−α − V
δ1−α

α− 1

= µ− C δ1−α,

where C > 0 is constant.
Since δ = ⌊logn⌋ and α > 1, we obtain

E [Yi |X1, . . . , Xi−1] ≥ µ− C δ1−α = µ− C (⌊logn⌋)
1−α

≥ µ− o(1) ≥
µ

2
.

Next, notice that the above conditional expectation’s lower bound is irrele-
vant to the realizations of the r.vs. X1, . . . , Xi−1. Thus, for any trajectory of the
random walk {xj}

i−1
j=1, where xj ∈ D(Xj) is the element from the domain of the

r.v. Xj , we have that E [Yi |x1, . . . , xi−1] ≥
µ
2 . Hence, since D(Yi) ⊆ D(Xi), it

follows that

E [Yi |Y1, . . . , Yi−1] ≥
µ

2
. (5)

As for the second moment, since Yi ≤ δ, we have an obvious upper bound

E
[

Y 2
i |Y1, . . . , Yi−1

]

≤ δ2 ≤ log2 n. (6)

Now, using the truncated variables, we introduce an auxiliary random process

Y = X0 +

t
∑

i=1

Yi.
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Then the probability that the original random walk X will drop below the
ǫtµ level, where 0 < ǫ < 1/2, is at most

Pr [X ≤ ǫtµ] ≤ Pr [Y ≤ ǫtµ] , since Y ≤ X

= Pr
[

e−λY ≥ e−λǫtµ
]

, for any µ > 0

≤ eλǫtµEe−λY , by Markov’s inequality

= eλǫtµ−λX0Ee−λ
∑t

i=1 Yi

= eλǫtµ−λX0E

[

t
∏

i=1

e−λYi

]

.

Next, we apply the tower property of expectation, that is for any two random
variables A and B defined over the same probability space and E|A| < ∞, the
following holds (subscript indicates over which variable calculation of expectation
is performed)

EA = EA [A] = EB

[

EA [A |B]
]

.

Thus, we have

Pr [X ≤ ǫtµ] ≤ eλǫtµ−λX0E

[

t
∏

i=1

e−λYi

]

= eλǫtµ−λX0EY1,...,Yt

[

t
∏

i=1

e−λYi

]

= eλǫtµ−λX0EY1,...,Yt−1

[

EYt

[

t
∏

i=1

e−λYi |Y1, . . . , Yi−1

]]

.

Consider the innermost expectation. Since we condition it over variables
Y1, . . . , Yt−1, we consider such variables as given (or constant). Hence,

Pr [X ≤ ǫtµ] ≤ eλǫtµ−λX0EY1,...,Yt−1

[

EYt

[

t
∏

i=1

e−λYi |Y1, . . . , Yi−1

]]

= eλǫtµ−λX0EY1,...,Yt−1

[

t−1
∏

i=1

e−λYi · EYt

[

e−λYt |Y1, . . . , Yi−1

]

]

.

(7)

Now, since Yi ≥ −a just like the original variables Xi’s, we can upper bound
the inner expectation by applying the well-known inequality

e−x ≤ 1− x+ x2,

which is valid for every x ≥ −1. Hence, by restricting 0 < λ ≤ 1/a, we have

EYt

[

e−µYt |Y1, . . . , Yt−1

]

≤ EYt

[

1− λYt + λ2Y 2
t |Y1, . . . , Yt−1

]

= 1− λEYt [Yt |Y1, . . . , Yt−1] + λ2
E
[

Y 2
t |Y1, . . . , Yt−1

]

≤ 1− λ
µ

2
+ λ2 log2 t,
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since E [Yi |Y1, . . . , Yi−1] ≥
µ
2 (5) and E

[

Y 2
i |Y1, . . . , Yi−1

]

≤ log2 t (6). There-
fore, we obtain that

EYt

[

e−µYt |Y1, . . . , Yt−1

]

≤ 1− λ
µ

2
+ λ2 log2 t ≤ exp

(

−λ
µ

2
+ λ2 log2 t

)

.

Thus, the probability in (7) is upper bounded as

Pr [X ≤ ǫtµ] ≤ eλǫtµ−λX0EY1,...,Yt−1

[

t−1
∏

i=1

e−λYi · EYt

[

e−λYt |Y1, . . . , Yt−1

]

]

≤ eλǫtµ−λX0EY1,...,Yt−1

[

t−1
∏

i=1

e−λYi · exp
(

−λ
µ

2
+ λ2 log2 t

)

]

≤ eλǫtµ−λX0 · exp
(

−λ
µ

2
+ λ2 log2 t

)

EY1,...,Yt−1

[

t−1
∏

i=1

e−λYi

]

.

Repeating the same process inductively for another t− 1 times, we obtain

Pr [X ≤ ǫtµ] ≤ eλǫtµ−λX0 · exp
(

−λ
µ

2
+ λ2 log2 t

)

EY1,...,Yt−1

[

t−1
∏

i=1

e−λYi

]

≤ eλǫtµ−λX0 · exp
(

−λt
µ

2
+ λ2t log2 t

)

= exp
(

λǫtµ− λX0 − λt
µ

2
+ λ2t log2 t

)

.

Fix λ = µ
2 log2 t

(

1
2 − ǫ

)

. Note, that when t → ∞ and µ = const, then 0 < λ <

1/a. Hence, we have

Pr [X ≤ ǫtµ] ≤ exp
(

λǫtµ− λX0 − λt
µ

2
+ λ2t log2 t

)

= exp
(

λt
(

ǫµ−
µ

2
+ λ log2 t

)

− λX0

)

= exp

(

λt

(

µ

(

ǫ−
1

2

)

+ λ log2 t

)

− λX0

)

= exp

(

λt

(

µ

(

ǫ−
1

2

)

+
µ

2

(

1

2
− ǫ

))

− λX0

)

= exp

(

λt

(

µ

2

(

ǫ−
1

2

))

− λX0

)

= exp

(

−λ(t+X0)
µ

2

(

1

2
− ǫ

))

= exp

(

−
t+X0

4 log2 t
µ2

(

1

2
− ǫ

)2
)

.

And the lemma follows. �
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2.3 Contradictory paths and bicycles

Unlike k-CNFs for larger values of k, 2-CNFs have a clear structural feature
that indicates whether or not the formula is satisfiable. Let φ be a 2-CNF on
variables v1, . . . , vn. A sequence of clauses (l1, l2), (l̄2, l3), . . . , (l̄s−1, ls) is said to
be a path from literal l1 to literal ls. As is easily seen, if there are variables
u, v, w in φ such that there are paths from u to v and v̄, and from ū to w and
w̄, then φ is unsatisfiable, see also [9]. Such a collection of paths is sometimes
called contradictory paths.

On the other hand, if φ is unsatisfiable, it has to contain a bicycle, see [15].
A bicycle of length s is a path (u, l1), (l̄1, l2), . . . , (l̄s, v), where the variables as-
sociated with literals l1, l2, . . . , ls are distinct, and u, v ∈ {l1, l̄1, l2, l̄2, . . . , ls, l̄s}.

2.4 The main result

Now we are ready to state our main result:

Theorem 4. Let φ ∼ C2
n(ξ), where ξ ∼ P (α). Then for n → ∞

Pr[φ is SAT ] =











0, when 0 < α < 2,

0, when α = 2 or Eξ2 > 3Eξ,

1, when Eξ2 < 3Eξ.

If the r.v. ξ is distributed according to the zeta distribution, that is, Pr [ξ = ℓ] =
ℓ−β

ζ(β) for some β > 1 and where ζ(β) =
∑

d≥1 d
−β is the Riemann zeta function

(note that in this case ξ ∼ P(β − 1)), then the satisfiabitliy threshold is given
by a certain value of β.

Corollary 2. Let φ ∼ C2
n(ξ), where the pdf of ξ is Pr [ξ = ℓ] = ℓ−β

ζ(β) for some

β > 1 and all ℓ ≥ 1. Then there exists β0 such that for n → ∞

Pr[φ is SAT ] =

{

0, when 1 < β < β0,

1, when β > β0.

The value β0 is the positive solution of the equation Eξ2 = 3Eξ, and β0 ≈ 3.26.

A proof of this theorem constitutes the rest of the paper. We consider each
case separately, and the first case is proved in Proposition 1, while the other two
cases are examined in Propositions 2 and 3.

3 Satisfiability of C2

n
(ξ), when ξ ∼ P (α) and 0 < α < 2

This case is the easiest to analyze. Moreover, we show that the same result holds
for any φ ∼ Ck

n (ξ), where k ≥ 2, when α < k
k−1 . Hence, the case 0 < α < 2

for unsatisfiable 2-CNFs follows. In other words, if α < k
k−1 , then any k-CNF

formulas from Ck
n (ξ) will be unsatisfiable w.h.p.
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What happens here, is that we expect many variables to have degree ≫

S
(k−1)/k
n . Let us fix k such variables. Then, as it is shown in the proof, the

formula φ contains (k − 1)! logk n clauses that are formed only from literals of
these k variables. However, one of the possible subformulas, which is formed from
only k variables, that renders the whole k-CNF formula unsatisfiable consists of
only 2k clauses.

The next proposition establishes a lower bound of satisfiability threshold for
any power-law distributed k-CNF from configuration model.

Proposition 1. Let φ ∼ C
k
n(ξ), where ξ ∼ P (α), k ≥ 2 and 0 < α < k

k−1 .
Then w.h.p. φ is unsatisfiable.

Proof. First, recall quantity Sn that serves as the total number of clones

Sn =

n
∑

i=1

deg(vi).

Since each deg(vi) is an independent realization of the r.v. ξ in Ck
n(ξ), we have

that deg(vi)
d
= ξ.

Next, let’s estimate how many variables vi’s in φ have degrees at least

S
(k−1)/k
n logn:

E

[

n
∑

i=1

1
deg(vi)≥S

(k−1)/k
n logn

]

=

n
∑

i=1

E

[

1
deg(vi)≥S

(k−1)/k
n logn

]

=

n
∑

i=1

Pr
[

deg(vi) ≥ S(k−1)/k
n logn

]

=
n
∑

i=1

Fξ

(

S(k−1)/k
n logn

)

= nFξ

(

S(k−1)/k
n logn

)

.

However, since ξ ∼ P (α), then Fξ (x) ≥ W x−α for some W > 0 and all
x ≥ 1, hence,

E

[

n
∑

i=1

1
deg(vi)≥S

(k−1)/k
n log n

]

= nFξ

(

S(k−1)/k
n logn

)

≥ W nS−α(k−1)/k
n log−α n. (8)

Prior to moving to the next steps of the proof, we note that the actual number of

variables with degrees at least S
(k−1)/k
n logn is distributed according to Binomial

distribution, hence, it is concentrated around its mean.
Next, since α < k

k−1 , we need to consider 2 cases: first, is when 0 < α ≤ 1,

and second is for 1 < α < k
k−1 . Thus, for the first case, due to Theorem 2, we

have that w.h.p.
Sn ≤ C n1/α,
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where C > 0 is some constant. Therefore,

E

[

n
∑

i=1

1
deg(vi)≥S

(k−1)/k
n logn

]

≥ W nS−α(k−1)/k
n log−α n

≥ W n
(

C n1/α
)−α(k−1)/k

log−α n

= Ω
(

n1−(k−1)/k log−α n
)

.

Hence, we expect polynomially many variables to have large degrees. The
same holds in the case, when 1 < α < k

k−1 . Then Sn = (1 + o(1))nEξ w.h.p.
due to Theorem 3, and so the expected number of variables with degrees at least

S
(k−1)/k
n logn is:

E

[

n
∑

i=1

1
deg(vi)≥S

(k−1)/k
n logn

]

≥ W nS−α(k−1)/k
n log−α n

≥ W n
(

(1 + o(1))nEξ
)−α(k−1)/k

log−α n

= Ω
(

n1−α(k−1)/k log−α n
)

.

And so in both cases we note that we expect many variables having degrees

at least S
(k−1)/k
n logn. Let us fix k arbitrary variables v1, v2, . . . , vk ∈ V (φ) such

that deg(v1) = deg(v2) = · · · = deg(vk) = d ≥ S
(k−1)/k
n logn. Next we introduce

indicator r.v. Ic, which is equal to 1 iff clause c ∈ C(φ) consists solely of clones
of variables v1, v2, . . . , vk. Then

H =
∑

c∈C(φ)

Ic

is the total number of clauses formed only from clones of variables v1, v2, . . . , vk.

We show that H is the sum of weakly correlated binary r.vs. and therefore
the actual value of H does not deviate much from its expected value. First, the
probability that some specific clause c ∈ C(φ) is constructed solely from the
clones of variables v1, v2, . . . , vk is

Pr [Ic = 1] = k!
deg(v1)

Sn
×

deg(v2)

Sn − 1
× · · · ×

deg(vk)

Sn − k + 1

= k!

k
∏

i=1

d− 1

Sn − i+ 1
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We also have that for any two specific clauses c0, c1 ∈ C(φ)

Pr [Ic1 = 1 | Ic0 = 1] = k!
deg(v1)− 1

Sn − k
×

deg(v2)− 1

Sn − k − 1
× · · · ×

deg(vk)− 1

Sn − k − i+ 1

= k!
k
∏

i=1

d− 1

Sn − k − i+ 1

= (1 + o(1))k!

k
∏

i=1

d

Sn − i+ 1

= (1 + o(1)) Pr [Ic1 = 1]

Hence, the covariance is

Cov(Ic0 , Ic1) = E [Ic0Ic1 ]− EIc0 · EIc1

= Pr [Ic1 = 1 | Ic0 = 1] Pr [Ic0 = 1]− Pr [Ic0 = 1]Pr [Ic1 = 1]

= (1 + o(1)) Pr [Ic1 = 1]Pr [Ic0 = 1]− Pr [Ic0 = 1]Pr [Ic1 = 1]

= o
(

Pr [Ic0 = 1]
2
)

,

since Pr [Ic0 = 1] = Pr [Ic1 = 1]. Then the variance of H is at most

V ar[H ] = V ar





∑

c∈C(φ)

Ic



 =
∑

c∈C(φ)

V ar[Ic] +
∑

c0 6=c1:
c0,c1∈C(φ)

Cov (Ic0 , Ic1)

≤
∑

c∈C(φ)

E[Ic] +
∑

c0 6=c1:
c0,c1∈C(φ)

Cov (Ic0 , Ic1)

= E





∑

c∈C(φ)

Ic



+ |C(φ)|2o
(

Pr [Ic′ = 1]
2
)

,

where c
′

∈ C(φ) is any clause from φ. Thus, we obtain

V ar[H ] ≤ E





∑

c∈C(φ)

Ic



+ |C(φ)|2o
(

Pr [Ic′ = 1]
2
)

= E [H ] + o

(

(

|C(φ)|Pr [Ic′ = 1]
)2
)

= E [H ] + o









E





∑

c∈C(φ)

Ic









2






= E [H ] + o
(

E [H ]
2
)

= o
(

E [H ]2
)

.



Satisfiability Threshold for Power Law Random 2-SAT 19

Therefore, due to Chebyshev’s inequality, it follows that H is concentrated
around its expectation, i.e. the expected value E [H ] serves as a good approxi-
mation to the actual value of the r.v. H .

Finally, the expected number of clauses formed only from clones of variables
v1, v2, . . . , vk ∈ V (φ) is

E [H ] = E





∑

c∈C(φ)

Ic



 =
∑

c∈C(φ)

Pr [Ic = 1]

=
∑

c∈C(φ)

k!
deg(v1)

Sn
×

deg(v2)

Sn − 1
× · · · ×

deg(vk)

Sn − k + 1

= (1 + o(1))
∑

c∈C(φ)

k!

(

d

Sn

)k

= (1 + o(1)) |C(φ)|k!

(

d

Sn

)k

= (1 + o(1))
Sn

k
k!

(

d

Sn

)k

, since |C(φ)| =
Sn

k

= (1 + o(1)) (k − 1)!
dk

Sk−1
n

≥ (1 + o(1)) (k − 1)!

(

S
(k−1)/k
n logn

)k

Sk−1
n

, since d ≥ S(k−1)/k
n logn

= (1 + o(1)) (k − 1)! logk n.

Hence, sinceH = (1+o(1))E [H ] w.h.p., and E [H ] ≥ (1+o(1)) (k−1)! logk n,
it follows that the number of clauses formed solely of clones of the fixed k vari-
ables grows together with n. However, as it was pointed earlier, we need only a
2k clauses subformula to make φ unsatisfiable. Thus, φ is UNSAT w.h.p. when
0 < α < k

k−1 . �

After proving the above proposition, result for 2-CNF from C2
n(ξ) naturally

follows.

Corollary 3. Let φ ∼ C2
n(ξ), where ξ ∼ P (α), such that 0 < α < 2. Then

w.h.p. φ is unsatisfiable.

4 Satisfiability of C2

n
(ξ), when ξ ∼ P (α) and α = 2 or

Eξ2 > 3Eξ

4.1 The inequality Eξ2 > 3Eξ

Analysis of this and subsequent cases mainly follows the approach suggested
in [20], where they deal with random 2-SAT instances having prescribed literal
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degrees. In other words, the assumption in [20] is that the degree sequences
d+1 , . . . , d

+
n and d−1 , . . . , d

−
n are fixed, and a random 2-CNF is generated as in the

configuration model. Then two quantities play a very important role. The first
one is the sum of all degrees Sn =

∑n
i=1(d

+
i +d−i ) (we use our notation) and the

second one is the number of pairs of complementary clones Tn =
∑n

i=1 d
+
i d

−
i . It

is then proved that a 2-CNF with a given degree sequence is satisfiable w.h.p.
if and only if 2Tn < (1 − ε)Sn for some ε > 0. We will quickly show that the
conditions α = 2 and Eξ2 > 3Eξ imply the inequality 2Tn > (1 + ε)Sn w.h.p.,
see Lemma 6, and therefore a random 2-CNF in this case should be unsatisfiable
w.h.p. The problem however is that Cooper et al. only prove their result under a
significant restrictions on the maximal degree of literals,∆ < n1/11. By Lemma 2
the maximal degree of literals in our case tends to be much higher, and we cannot
directly utilize the result from [20]. Therefore we follow the main steps of the
argument in [20] changing parameters, calculations, and in a number of cases
giving a completely new proofs.

Lemma 6. Let φ ∼ C2
n(ξ), where ξ ∼ P (α) and α = 2 or Eξ2 > 3Eξ. Let also

Sn =
∑n

i=1 di and Tn =
∑n

i=1 d
+
i d

−
i . Then w.h.p. 2Tn > (1 + ε)Sn.

Proof. Let us first consider the case, when α > 2 and Eξ2 > 3Eξ. Then by
Lemma 1 and Theorem 3, we have that w.h.p.

Sn =
n
∑

i=1

di = (1 + o(1))
n
∑

i=1

Edi = (1 + o(1))nEξ,

since di
d
= ξ. Likewise, since α > 2, we also have that w.h.p.

Tn =

n
∑

i=1

d+i d
−
i = (1 + o(1))

n
∑

i=1

E
[

d+i d
−
i

]

= (1 + o(1))n
Eξ2 − Eξ

4
,

where the last equality follows from Lemma 4.
Hence, when Eξ2 > 3Eξ, we have that w.h.p.

2Tn

Sn
= (1 ± o(1))

Eξ2 − Eξ

2Eξ
= (1 ± o(1))

(

Eξ2

2Eξ
−

1

2

)

> 1.

Now we consider the case α = 2. Unfortunately, then E
[

d+i d
−
i

]

= ∞ for any
i ∈ [1 . . . n], and so we cannot claim that Tn is concentrated around its mean.
Nevertheless, the quantity 2Tn

Sn
is still greater than 1 in this case.

Since ξ ∼ P (2), there are constants V,W such that W ℓ−2 ≤ Fξ(ℓ) ≤ V ℓ−2.
We construct auxiliary random variables ξε ∼ P (2 + ε) for ε > 0. Later we will
argue that ξε can be chosen such that Eξ2ε > 3Eξε. Specifically, let ξε be such
that Fξε(1) = 1 and Fξε(ℓ) = W ℓ−2−ε for ℓ > 1.

Let T ε
n be the number of pairs of complementary clones in formula φ0 ∼

C2
n(ξε). Since Pr [ξε ≥ ℓ] ≤ Pr [ξ ≥ ℓ] for any ℓ ≥ 1, we have that

Pr [2Tn > Sn] ≥ Pr [2T ε
n > Sn] , (9)
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due to the stochastic dominance of the r.v. Tn over T ε
n. As is easily seen, for

sufficiently small ε we have Eξ2ε > 3Eξε. Therefore, by the first part of the proof
2T ε

n > Sn w.h.p. The result follows.
Thus, in either case we obtain that for some µ > 0 w.h.p. 2Tn

Sn
= 1 + µ. �

In what follows, we will always assume that α > 2.

4.2 TSPAN

The process of generating a random 2-CNF in the configuration model can be
viewed as follows. After creating a pool of clones, we assign each clone a polarity,
making it a clone of a positive or negative literal. Then we choose a random
partioning of the set of clones into 2-element sets. The important point here is
that in the process of selection of a random matching we pair clones up one after
another, and it does not matter in which order a clone to match is selected, as
long as it is paired with a random unpaired clone.

Our goal is to show that our random 2-CNF φ contains contradictory paths.
In order to achieve this we exploit the property above as follows. Starting from
a random literal p we will grow a set span(p) of literals reachable from p in the
sense of paths introduced in Section 2.3. This is done by trying to iteratively
extend span(p) by pairing one of the unpaired clones of the negation of a literal
from span(p). The details of the process will be described later. The hope is that
at some point span(p) contains a pair of literals of the form v, v̄, and therefore
φ contains a part of the required contradictory paths. To obtain the remaining
part we run the same process starting from p̄.

To show that this approach works we need to prove three key facts:

– that span(p) grows to a certain size with reasonable probability (Lemma 14),

– that if span(p) has grown to the required size, it contains a pair v, v̄ w.h.p.
(Lemma 16), and

– that the processes initiated at p and p̄ do not interact too much w.h.p.
(Lemma 10).

Since the probability that span(p) grows to the required size is not very
high, most likely this process will have to be repeated multiple times. It is there-
fore important that the probabilities above are estimated when some clones are
already paired up, and that all the quantities involved are carefully chosen.

We now fill in some details. The basic “growing” algorithm is TSPAN (short
for truncated span), see Algorithm 2. Take a literal and pick a clone p associated
with it. Then partition the set S of all clones into 3 subsets: the set L(p) of “live”
clones from which we can grow the span, the set C of paired (or “connected”)
clones, and the set U of “untouched” yet clones. We start with L(p) = {p},
U = S − {p}, and empty set C.

TSPAN works as follows: while the set of live clones is not empty, pick
u.a.r. clone c1 from the live set, and pair it u.a.r. with any non-paired clone
c2 ∈ U ∪ L(p) \ {c1}. Since clones c1 and c2 are paired now, we move them into
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the set of paired clones C, while removing them from both sets L(p) and U to
preserve the property that the sets C,U , and L(p) form a partition of S.

Next, we identify the literal l which clone c2 is associated with, and we move
all the complementary clones of l̄ from the set of untouched clones U into L(p).
The idea of this step is, when we add an edge (c1, c2), where c2 is one of the
l’s clones, to grow the span further we will need to add another directed edge
(c3, · ), where c3 is one of the clones belonging to l̄. Hence, we make all clones of
l̄ live, making them available to pick as a starting point during next iterations
of TSPAN. This way we can grow a span, starting from the clone p, and then
the set

span(p) = {c ∈ S | c is reachable from p},

contains all the clones, which are reachable from the clone p (or literal that is
associated with p) at a certain iteration of TSPAN. We call this set a p-span.

The version of TSPAN given in Algorithm 2 takes as input sets C,L,U
(which therefore do not have to be empty in the beginning of execution of the
procedure), a maximal number of iterations τ , and a maximal size of the set
of live clones. It starts by using the given sets, C,L,U , stops after at most τ
iterations or when L reaches size σ.

Algorithm 2 Procedure TSPAN

1: procedure TSPAN(C,L,U , σ, τ )
2: while 0 < |L| ≤ σ and less than τ pairings performed do
3: Pick u.a.r. a live clone c1 ∈ L
4: Pick u.a.r. an unpaired clone c2 ∈ U ∪ L \ {c1}
5: Pair clones c1 and c2, i.e.
6: C ← C ∪ {c1, c2}
7: L ← L \ {c1, c2}
8: U ← U \ {c1, c2}
9: Let w be the literal associated with c2

10: Make live the clones associated with w̄, i.e
11: Let
12: κ(w̄) = {c ∈ S | c is associated with w̄}
13: L← L ∪ (U ∩ κ(w̄))
14: U ← U \ κ(w̄)
15: end while
16: end procedure

4.3 Searching for contradictory paths

The procedure TSPAN is used to find contradictory paths as follows:

Step 1. Pick a variable and a pair of its complementary clones p, q.

Step 2. Run TSPAN starting from p for at most s1 = n
α+4

6(α+1) steps. If L(p)
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becomes empty during the process, or if q gets included into span(p), or if in the
end |L(p)| < σ = s1µ/6 (µ is determined by the value 2Tn/Sn, see Lemma 7),
declare failure.

Step 3. Run TSPAN starting from q and the current set C of paired clones

for at most s1 = n
α+4

6(α+1) steps. If L(q) becomes empty during the process, or if
|L(q) ∩ L(q)| = Θ(s1), or if in the end |L(q)| < σ, declare failure.

Step 4. Run TSPAN starting from L(p) and the current set C of paired clones

for at most s2 = n
11α2+3α−2
12α(α+1) steps. If L(p) becomes empty during the process,

declare failure.

Step 5. Similarly, run TSPAN starting from L(q) and the current set C of

paired clones for at most s2 = n
11α2+3α−2
12α(α+1) steps. If L(q) becomes empty during

the process, declare failure.

If a failure is declared at any step, we abandon the current pair p, q and pick
another variable and a pair of its complementary clones keeping the current set
C of paired clones that will be used in the next round. Also, even if all the Steps
are successful, but the constructed span does not contain contradictory paths,
we also declare a failure. It is important that the set C never grows too large,
that is, it remains of size |C| = o(n). This implies that the number of restarts

does not exceed K = n
7α+10

12(α+1) .

The next lemma shows how we exploit the value of µ, since it acts as an
approximation to the number of newly added live into the set of live clones
when 2Tn

Sn
> 1. However, first, we need to introduce several variables. Let Li,

Ui, and Ci are the live, untouched, and connected sets respectively after the i-th
iteration of some execution of TSPAN. Additionally we have Li = |Li| , Ci =
|Ci| , Ui = |Ui| . Also let Xi indicate the change in the number of live clones after
performing the ith iteration, i.e. Xi = Li − Li−1.

Lemma 7. Let 2Tn

Sn
= 1 + µ, where µ > 0. Then for any t ≤ |C| = o (n), we

have

E [Xt |X1, . . . , Xt−1] ≥ µ/2.

Before proving Lemma 7 we show a couple of useful auxiliary results regarding
Xi’s and Li’s:

Lemma 8. There exists constant V > 0, such that for any d ≥ 1 and i ≤ |C| =
o (n)

Pr [Xi ≥ d |X1, X2, · · · , Xi−1] ≤ V d1−α. (10)

Proof. Notice that Xi ≥ 0 indicates that at the i-th iteration, the TSPAN
picked a clone ci to pair with from the set of untouched clones Ui−1. Assume
that ci is associated with literal li. Then Xi = deg(l̄)− 1 (minus one comes from
the fact that according to the TSPAN algorithm, Li−1 always loses one clone).
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Hence, for the live set to gain d clones, ci must be one of the clones associated
with literals whose complements have exactly d+ 1 clones. Thus,

Pr [Xi ≥ d |X1, X2, · · · , Xi−1] ≤
1

Sn − 2i− 1
E





∑

l∈L(φ)

deg(l) · 1deg(l̄)≥d+1





=
1

Sn − 2i− 1

∑

l∈L(φ)

E

[

deg(l) · 1deg(l̄)≥d+1

]

.

(11)

In the above estimate of the probability we claim that the total number of clones
of the literals with degree at least d + 1 is well-approximated by its mean. To
see why this is true, note that the tail function of the r.v. deg(l) · 1deg(l̄)≥d+1 is

upper bounded by the right tail function of the r.v. deg(l) = d+ = d−. Hence,
for α > 2, we expect that

∑

l∈L(φ)

deg(l) · 1deg(l̄)≥d+1 = (1 + o(1))
∑

l∈L(φ)

E

[

deg(l) · 1deg(l̄)≥d+1

]

,

due to Theorem 3.
Now, let us fix some specific literal l and let v be its corresponding variable.

Then

E

[

deg(l) · 1deg(l̄)≥d+1

]

=
∞
∑

ℓ=d+1

ℓ
∑

ℓ0=d+1

(ℓ− ℓ0) Pr
[

deg(l̄) = ℓ0 | deg(v) = ℓ
]

Pr [deg(v) = ℓ]

≤
∞
∑

ℓ=d+1

ℓ
∑

ℓ0=d+1

ℓ Pr
[

deg(l̄) = ℓ0 | deg(v) = ℓ
]

Pr [deg(v) = ℓ]

≤

∞
∑

ℓ=d+1

ℓ
∑

ℓ0=d+1

ℓ Pr

[

Bin

(

deg(v),
1

2

)

= ℓ0 | deg(v) = ℓ

]

Pr [deg(v) = ℓ]

=

∞
∑

ℓ=d+1

ℓ
∑

ℓ0=d+1

ℓ

(

ℓ

ℓ0

)

1

2ℓ
Pr [deg(v) = ℓ]

=

∞
∑

ℓ=d+1

ℓ

2ℓ
Pr [deg(v) = ℓ]

ℓ
∑

ℓ0=d+1

(

ℓ

ℓ0

)

≤

∞
∑

ℓ=d+1

ℓ

2ℓ
Pr [deg(v) = ℓ]

ℓ
∑

ℓ0=0

(

ℓ

ℓ0

)

=

∞
∑

ℓ=d+1

ℓ

2ℓ
Pr [deg(v) = ℓ] 2ℓ

≤

∞
∑

ℓ=d

ℓPr [deg(v) = ℓ] .
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Next, we apply summation by parts

E

[

deg(l) · 1deg(l̄)≥d+1

]

≤

∞
∑

ℓ=d

ℓPr [deg(v) = ℓ]

=

∞
∑

ℓ=d

ℓ
(

Pr [deg(v) ≥ ℓ]− Pr [deg(v) ≥ ℓ+ 1]
)

=

∞
∑

ℓ=d

ℓ Pr [deg(v) ≥ ℓ]−

∞
∑

ℓ=d+1

(ℓ − 1) Pr [deg(v) ≥ ℓ]

= d Pr [deg(v) ≥ d] +

∞
∑

ℓ=d+1

ℓ Pr [deg(v) ≥ ℓ]−

−

∞
∑

ℓ=d+2

(ℓ− 1) Pr [deg(v) ≥ ℓ]

= d Pr [deg(v) ≥ ℓ] +
∞
∑

ℓ=d+1

Pr [deg(v) ≥ ℓ] .

Recall that deg(v)
d
= ξ ∼ P (α), thus, we obtain that for a fixed l

E

[

deg(l) · 1deg(l̄)≥d+1

]

≤ d Pr [deg(v) ≥ d] +

∞
∑

ℓ=d+1

Pr [deg(v) ≥ ℓ]

= d Pr [ξ ≥ d] +

∞
∑

ℓ=d+1

Pr [ξ ≥ ℓ]

= dFξ(d) +

∞
∑

ℓ=d+1

Fξ(ℓ)

≤ V d1−α + V

∞
∑

ℓ=d+1

ℓ−α

≤ Vr d
1−α,

for some constant Vr > 0.

Therefore, (11) can be further simplified

Pr [Xi ≥ d |X1, X2, · · · , Xi−1] ≤
1

Sn − 2i− 1

∑

l∈L(φ)

E

[

deg(l) · 1deg(l̄)≥d+1

]

≤
1

Sn − 2i− 1

∑

l∈L(φ)

Vr d
1−α

≤
2n

Sn − 2i− 1
Vr d

1−α,
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since |L(φ)| ≤ 2n. Recall that w.h.p. Sn = (1 + o(1))nEξ. Then for i = o (n) we
obtain

Pr [Xi ≥ d |X1, X2, · · · , Xi−1] ≤
2n

Sn − 2i− 1
Vr d

1−α

=
2n

(1 + o(1))nEξ − 2i− 1
Vr d

1−α

≤ 2Vr d
1−α,

since Eξ ≥ 1. Finally, denote by V := 2Vr, and the lemma follows with

Pr [Xi ≥ d |X1, X2, · · · , Xi−1] ≤ V d1−α.

�

Next, we show that Li = o(n) as long as i is not too large. However, instead
of showing this result directly, we will prove a somewhat more general statement
from which the desired property naturally follows.

Lemma 9. Let the sequence {ξi}
cn
i=1, where c > 0 is constant, contains cn in-

dependent copies of the r.v. ξ which has the right tail for any ℓ ≥ 1

Fξ(ℓ) = Pr [ξ ≥ ℓ] ≤ V ℓ−α,

with V > 0 and α > 1. Let A ⊂ {ξi}
cn
i=1 be any subset of size t = nβ (0 < β < 1).

Then w.h.p.
∑

X∈A

X = O
(

nβ+ 1−β
α

)

.

Proof. Let us call a variable ξj “heavy”, when ξj ≥ n
1−β
α . Then the expected

sum of “heavy” variables in the original sequence {ξi}
cn
i=1 is

E





∑

1≤i≤cn

ξi 1
ξi≥n

1−β
α



 = cn
∑

d≥n
1−β
α

dPr [ξ = d]

= cn
∑

d≥n
1−β
α

d
(

Pr [ξ ≥ d]− Pr [ξ ≥ d+ 1]
)

= cn
∑

d≥n
1−β
α

dPr [ξ ≥ d]− cn
∑

d≥n
1−β
α +1

(d− 1)Pr [ξ ≥ d]

= cn1+ 1−β
α Pr

[

ξ ≥ n
1−β
α

]

+ cn
∑

d≥n
1−β
α +1

Pr [ξ ≥ d]

= cn1+ 1−β
α Fξ

(

n
1−β
α

)

+ cn
∑

d≥n
1−β
α +1

Fξ (d) .



Satisfiability Threshold for Power Law Random 2-SAT 27

Next, recall that Fξ

(

n
1−β
α

)

≤ V nβ−1. Then

E





∑

1≤i≤n

ξi 1
ξi≥n

1−β
α



 ≤ cn1+ 1−β
α Fξ

(

n
1−β
α

)

+ cn
∑

d≥n
1−β
α +1

Fξ (d)

≤ cV nβ+ 1−β
α + cV n

∑

d≥n
1−β
α +1

d−α

= cV nβ+ 1−β
α +O

(

n1+(1−α) 1−β
α

)

= O
(

nβ+ 1−β
α

)

.

Since the right tail functions of the r.vs. ξi 1
ξi≥n

1−β
α

is upper bounded by the

right tail function of the original non-truncated variable ξ, the sum of “heavy”
variables is concentrated around its mean. Therefore, even if A contained only the

“heavy” variables, the resulting sum would be at most O
(

nβ+ 1−β
α

)

. However,

if we pick “non-heavy” variables, meaning the ones that have degree at most

n
1−β
α , then again the sum would be at most O

(

nβ+ 1−β
α

)

. And so no matter

what variables the set A includes, the sum of its elements is O
(

nβ+ 1−β
α

)

w.h.p.

�

However, our concern was to bound the size of the live set Li. And the next
corollary shows that we expect Li = o(n) as long as i is not too large.

Corollary 4. When t ≤ |C| = o (n), then Lt =
∑t

i=1 Xi = o(n) holds w.h.p.

Proof. Proof is pretty straightforward now, given Lemma 9. We have at
most 2n literals (it is not exactly 2n, since some variables may produce only one
literal). And the right tail function of the literals is

Pr [deg(l) ≥ ℓ] ≤ V ℓ−α,

due to (3). Since α > 2, and after applying Lemma 9 we obtain that

Lt =

t
∑

i=1

Xi = o(n)

holds w.h.p. �

Now we are in a position to prove Lemma 7.
Proof. [of Lemma 7] Assume that at the t -th iteration of TSPAN procedure

we paired clones (p, p′). Clearly, according to the algorithm, p ∈ Lt−1, thus, Li

loses at least one clone, and, with probability Lt−1

Sn−2t+1 , p
′ can be also from Lt−1,

making the live set to lose another clone.
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Next let us call variable vi undisturbed, if none of its clones were paired or
made live. Then, if p is paired with a positive clone of the undisturbed variable
vi (and we can do so in d+i ways with uniform probability 1

Sn−2t−1 ), then the

live set will gain d−i new clones. Similarly, when p is paired with a negative clone
of vi (which can be done in d−i ways with uniform probability 1

Sn−2t−1 ), then

the live set gains d+i new clones.
Note, it may happen that p is paired with clones of a “disturbed” variable,

which may add some clones into Lt, but since we are looking for a lower bound,
we can ignore this case. Therefore,

E [Xt |X1, . . . , Xt−1] = E [Lt − Lt−1 |X1, . . . , Xt−1]

≥ −1−
Lt−1

S − 2t− 1
+

1

S − 2t− 1

∑

j undisturbed

(

d+j d
−
j + d−j d

+
j

)

≥ −1 +
2

Sn − 2t− 1

(

n
∑

j=1

d+j d
−
j −

∑

j disturbed

d+j d
−
j −

Lt−1

2

)

.

Recall that
∑n

j=1 d
+
j d

−
j = Tn, and w.h.p.

Tn = (1 + o(1))n
Eξ2 − Eξ

4
.

Then

E [Xt |X1, . . . , Xt−1] ≥ −1 +
2

Sn − 2t− 1

(

n
∑

j=1

d+j d
−
j −

∑

j disturbed

d+j d
−
j −

Lt−1

2

)

≥ −1 +
2

Sn − 2t− 1

(

Tn −
∑

j disturbed

d+j d
−
j −

Lt−1

2

)

.

The sum
∑

j disturbed

d+j d
−
j is the sum of at most t = o (n) random variables

d+j d
−
j . Note, though, that these variables d+j d

−
j are not independent, nor iden-

tically distributed in the aforementioned sum, since during the first iterations
the TSPAN procedure favours products of complementary literals having larger
numbers of clones.

To bound this sum, let us introduce the set A of disturbed variables. Then
∑

j disturbed

d+j d
−
j =

∑

vj∈A

d+j d
−
j .

We know that |A| ≤ t = o (n), and A ⊂ T , where T = {d+i d
−
i | vi ∈ V (φ)} is

the set of all products of degrees of complementary literals. Now, every element
d+d− ∈ T has the right tail function Pr [d+d− ≥ ℓ] ≤ 2V ℓ−α/2 (4) for some
V > 0 and every ℓ ≥ 1. Thus, since α > 2, and according to Lemma 9, we obtain
that

∑

vi∈A

d+j d
−
j = o(n),
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which in turn means that w.h.p.
∑

j disturbed

d+j d
−
j = o(n). As for the Lt−1 term,

we know from Corollary 4 that it remains o(n) as well.
Hence,

E [Xt |X1, . . . , Xt−1] ≥ −1 +
2

Sn − 2t− 1

(

Tn −
∑

j disturbed

d+j d
−
j −

Lt−1

2

)

≥ −1 +
2

Sn − o(n)

(

Tn − o(n)
)

≥ −1 +
2Tn

Sn

(

1− o(1)
)

≥ −1 + (1 + µ)(1 − o(1))

≥ µ/2.

�

Next, we bound the probability of failure in each of Steps 2–5. We start with
Step 2 assuming that the number of paired clones is o(n).

Lemma 10 (Step 2). (1) Let s1 = n
α+4

6(α+1) . If TSPAN starts with a live set
containing only a single point L0 = 1, time bound τ = s1, the live set size
bound σ = s1µ/6, and the number of already paired clones |C| = o (n), then with
probability at least 1

2s1
TSPAN terminates with the live set of size at least σ.

(2) For any fixed clone q, the probability it will be paired in s1 = n
α+4

6(α+1) ≤ t =

o (n) steps of the algorithm, is at most o
(

1
s1

)

.

Proof. (1) The TSPAN procedure may terminate at the moment i < τ due
to one of two reasons: first, when Li hits 0, and second, when Li = σ. To simplify
analysis of the lemma, instead of dealing with conditional probabilities that the
live set hasn’t paired all its clones, we suggest to use a slightly modified version
of TSPAN, which always runs for τ steps.

The modified version works exactly as the original TSPAN procedure when
the live set has at least one clone. But if at some moment, the live set has
no clones to pick, we perform a “restart”: we restore the sets L, C, and D to
the states they’d been before the first iteration of TSPAN procedure occurred.
After that we continue the normal pairing process. Although during restarts we
reset the values of the sets, the counter that tracks the number of iterations the
TSPAN has performed is never reset, and keeps increasing with every iteration
until the procedure has performed pairings τ times, or the live set was able to
grow up to size σ, and only then the TSPAN terminates.

Now, let ri = 1 represents a “successfull” restart that started at i iteration,
meaning during this restart the live set accumulated σ clones, while ri = 0
means there was no restart or the live set became empty. What we are looking
for Pr[r1 = 1], since this probability is identical to the probability that the
original TSPAN was able to grow the live set to the desired size. Next, we can
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have at most τ restarts, and, since the very first restart has the most time and
we expect the live set to grow in the long run, it follows that it stochastically
dominates over other ri’s. Thus,

Pr [Ls1 ≥ s1µ/6] ≤ Pr

[

s1
∑

i=1

ri ≥ 1

]

≤ E

s1
∑

i=1

ri ≤ s1Er1 = s1 Pr[r1 = 1]

from which we obtain the probability that the TSPAN terminates with large
enough live set from the very first try:

P := Pr[r1 = 1] ≥
Pr[Ls1 ≥ s1µ/6]

s1
. (12)

Now what is left is to obtain bounds on the right-hand side probability. We
have a random process

Ls1 =

s1
∑

i=1

(Li − Li−1) =

s1
∑

i=1

Xi,

which consists of steps Xi, each having the right tail (Lemma 8)

Pr [Xi ≥ ℓ |X1, . . . , Xi−1] ≤ V ℓ−α,

and positive expectation (Lemma 7)

E [Xi |X1, . . . , Xi−1] ≥
µ

2
.

Therefore, according to Azuma-like inequality (Lemma 5), we obtain that

Pr [Ls1 ≤ s1µ/6] = Pr

[

Ls1 ≤
(

s1
µ

2

) 1

3

]

≤ exp

(

−
s1

4 log2 s1

µ2

576

)

Fixing s1 = n
α+4

6(α+1) , we have for some constant C > 0

Pr [Ls1 ≤ s1µ/6] ≤ exp

(

−C
n

α+4
6(α+1)

log2 n

)

= o(1) ≤ 1/2.

Thus, from (12) follows P ≥
Pr[Ls1≥s1µ/6]

s1
= 1

2s1
, which proves the first part of

the lemma.
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(2) To pair clone q, we must select it uniformly among |S| − |C| non-paired
clones. Hence, due to Union bound, we have

Pr [q /∈ Us1 ] ≤ Pr

[

s1
⋃

i=1

{q ∈ Ci}

]

≤

s1
∑

i=1

Pr
[

q ∈ Ci

]

= s1
1

|S| − |C|

=
s1

Sn − o(n)
, since |C| = t = o(n), and |S| = Sn

= (1 + o(1))
n

α+4
6(α+1)

nEξ
, since Sn = (1 + o(1))nEξ w.h.p.

= O
(

n
α+4

6(α+1)
−1
)

= O
(

n− 1
3

)

= o

(

1

s1

)

.

�

Note that in Lemma 10(1) the size of L(p) can be slightly greater than σ, as
it may increase by more than 1 in the last iteration. Also, in Lemma 10(2) the
bound on the probability is only useful when s1 is sufficiently large.

The probability that both runs of TSPAN for p and q are successful is given
by the following

Lemma 11 (Step 3). The probability that two specific clones p and q accu-
mulate s1µ/7 clones in their corresponding live sets L during the execution of
Steps 2,3, such that the span from clone p doesn’t include q nor make it live,
is at least 1

5s21
.

We start with an auxiliary lemma.

Lemma 12. The TSPAN procedure will pair at most o(s1) clones from the set
of live clones L(p), while constructing the span from q, when |C| = o(n).

Proof. Since the TSPAN from p and q runs for at most s1 steps, and |L(p)| =
o(n) w.h.p. due to Corollary 4, we have that the expected number of paired
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clones, which belonged to the set L(p) is at most

E

[

s1
∑

i=1

1u.a.r. picked clone c∈L(p)

]

=

s1
∑

i=1

Pr [u.a.r. picked clone c ∈ L(p)]

=

s1
∑

i=1

|L(p)|

|S| − |C|

=

s1
∑

i=1

o(n)

(1 + o(1))nEξ − o(n)
,

where the last step follows from |S| = Sn = (1 + o(1))nEξ w.h.p. Hence,

E

[

s1
∑

i=1

1u.a.r. picked clone c∈L(p)

]

=

s1
∑

i=1

o(n)

(1 + o(1))nEξ − o(n)

= (1 + o(1))s1
o(n)

n
= o(s1).

Moreover, since the process
∑s1

i=1 1u.a.r. picked clone c∈L(p) forms a binomial
trial, it follows that the actual number of paired clones does not deviate much
from its expectation, and hence, w.h.p.

s1
∑

i=1

1u.a.r. picked clone c∈L(p) = o(s1).

�

Thus, after growing span from clone p, there is a good probability that q
isn’t paired. So we can run the same TSPAN algorithm for clone q now, and
Lemma 10 suggests that we will be able to construct the second span of size
s1µ/6 with probability at least 1

2s1
.

However, we need to make sure that while the TSPAN process constructs
span from q, it doesn’t pair too many clones that were marked as “live” and
placed into L(p). But since Li = o(n) w.h.p. for i ≤ t = o(n), this ”bad“ event
is unlikely to happen.

Lemma 13. The probability that two specific clones p and q accumulate s1µ/7
clones in their corresponding live sets L during the execution of TSPAN algo-
rithm, such that the span from clone p doesn’t pair q nor make it “live”, is at
least 1

5s21
.

Proof. Let t0 ≤ t = o (n) be the time when we picked complementary clones p
and q as roots for growing spans, and let Lt0+s1(p) and Lt0+2s1(q) be the sizes of
the live sets L(p) and L(q) respectively after performing s1 iterations of TSPAN
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first for clone p and then for q. Then

Pr
[

{Lt0+s1(p) ≥ s1µ/6} ∧ {Lt0+2s1(q) ≥ s1µ/6} ∧ {q ∈ Ut+s1}
]

=

= Pr
[

Lt0+s1(p) ≥ s1µ/6 | {Lt0+2s1(q) ≥ s1µ/6} ∧ {q ∈ Ut+s1}
]

×

× Pr
[

{Lt0+2s1(q) ≥ s1µ/6} ∧ {q ∈ Ut+s1}
]

≥ Pr
[

Lt0+s1(p) ≥ s1µ/6 | {Lt0+2s1(q) ≥ s1µ/6} ∧ {q ∈ Ut+s1}
]

×

×
(

Pr[Lt0+2s1(q) ≥ s1µ/6]− Pr[q /∈ Ut+s1 ]
)

≥
1

2s1

( 1

2s1
− Pr [q /∈ Ut+s1 ]

)

,

since Pr [Lt0+s1(p) ≥ s1µ/6] = Pr [Lt0+2s1(q) ≥ s1µ/6] >
1

2s1
due to Lemma 10.

Next recall that

Pr [q /∈ Ut+s1 ] = o

(

1

s1

)

from Lemma 10.2, and so it follows that

Pr
[

{Lt0+s1(p) ≥ s1µ/6} ∧ {Lt0+2s1(q) ≥ s1µ/6} ∧ {q ∈ Ut+s1}
]

≥
1

2s1

( 1

2s1
− Pr[q /∈ Ut+s1 ]

)

≥
1

2s1

( 1

2s1
− o

(

1

s1

)

)

≥
1

5s21
,

and result of the lemma follows. �

Next, we show that we can grow the spans for another s2 steps, while keeping
sizes of the respective live sets of order at least s1µ/8.

Lemma 14 (Steps 4,5). Assume that p- and q-spans were both able to accu-

mulate at least s1µ/8 live clones after s1 = n
α+4

6(α+1) steps, and q is not in the
p-span. Then with probability 1 − o(1), TSPAN will be able to perform another

s2 = n
11α2+3α−2
12α(α+1) iterations, and Ls1+j ≥ s1µ/8 for every 0 ≤ j ≤ s2 for each

clone p and q.

We start by showing that TSPAN in Step 4 does not decimate the L(q).

Lemma 15. Let t0 ≤ t = |C| = o(n) be the moment of time, when we picked
complementary clones p and q, and let Lt0+s1(p) ≥ s1µ/7 and Lt0+2s1(q) ≥
s1µ/7 be the sizes of the live sets of clones p and q respectively after growing
each for s1 steps. Then the number of clones from L(q) that will be paired during
s2 iterations of the TSPAN procedure, while expanding the p-span, is at most
o(s1) w.h.p.
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Proof. The expected number of clones, which were marked as “live” by
q-span, while TSPAN is expanding the p-span is

E

[

s2
∑

i=1

1u.a.r. picked clone c∈L(q)

]

=

s2
∑

i=1

Pr [u.a.r. picked clone c ∈ L(q)]

=

s2
∑

i=1

|L(q)|

|S| − |C|

= (1 + o(1))

s2
∑

i=1

|L(q)|

nEξ
,

since |S| − |C| = Sn − o(n) = (1 + o(1))nEξ w.h.p. Now recall that |L(q)| is the
sum of at most s1 r.vs. {Xt0+s1+i}

s1
i=1, where each Xj represents the number of

clones of the literals being added into L(q). Hence, {Xt0+s1+i}
s1
i=1 ⊂ D, where

the set D is the multi-set of degrees of literals in φ, i.e. D := {deg(l) | l ∈ L(φ)}
and |D| ≤ 2n. Moreover, due to Corollary 1, each element in D is a r.v. with the
right tail function Pr [deg(l) ≥ ℓ] ≤ V ℓ−α.

Then, according to Lemma 9, we have that w.h.p.

|L(q)| = O

(

n
α+4

6(α+1)
+

1−
α+4

6(α+1)
α

)

= O

(

n
α2+9α+2
6α(α+1)

)

.

Thus, we obtain

E

[

s2
∑

i=1

1u.a.r. picked clone c∈L(q)

]

= (1 + o(1))

s2
∑

i=1

|L(q)|

nEξ

= (1 + o(1)) s2
|L(q)|

nEξ

= (1 + o(1)) s2 O





n
α2+9α+2
6α(α+1)

n





= O

(

n
11α2+3α−2
12α(α+1) × n

α2+9α+2
6α(α+1)

−1

)

= O

(

n
α2+9α+2
12α(α+1)

)

= o
(

n
α+4

6(α+1)

)

, when α > 2

= o(s1).

And since
∑s2

i=1 1u.a.r. picked clone c∈L(q) forms a binomial trial, it follows that the
actual number of clones from L(q) that get paired by the p-span is concentrated
around its expectation. Hence, we do not expect more than o(s1) clones from
L(q) to be paired, while expanding the span from p. �

Finally, we are in a position to prove Lemma 14
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Proof. When we start from a live set with size of order at least s1µ/8, to
be able to grow the span for another s2 steps, we need to make sure that the
size of the live set never drops to zero. First, recall that Ks1 + s2 = o (n), thus,
according to Lemma 7, for any j = o (n)

E [Xs1+j |X1, . . . , Xs1+j−1] ≥ µ/2 > 0

and for any d ≥ 1

Pr [Xs1+j ≥ d |X1, . . . , Xs1+j−1] ≤ V d−α.

Then, after applying the Azuma-like inequality (5), we obtain

Pr
[

Ls1+j ≤ s1
µ

8

]

≤ Pr

[

Ls1+j ≤
(

s1
µ

2

) 1

3

]

= Pr

[

Ls1 +

j
∑

i=1

Xs1+i ≤
(

s1
µ

2

) 1

3

]

≤ exp

(

−
j + Ls1

4 log2 s2

µ2

576

)

≤ exp

(

−
j + s1µ

log2 s2

µ2

4032

)

, since Ls1 ≥ s1µ/7

≤ exp

(

−
s1µ

log2 s2

µ2

4032

)

.

Recall that s1 = n
α+4

6(α+1) and s2 = n
11α2+3α−2
12α(α+1) . Hence, we obtain that for

specific 1 ≤ j ≤ s2

Pr
[

Ls1+j ≤ s1
µ

8

]

≤ exp

(

−
s1µ

log2 s2

µ2

4032

)

≤ exp

(

−C
n

α+4
6(α+1)

log2 n

)

,

for some constant C > 0. Then the probability that the live set will drop below
the s1µ/7 level during any of the 1 ≤ j ≤ s2 steps is, by Union bound,

Pr[

s2
⋃

j=1

{Ls1+j ≤ s1
µ

8
}] ≤

s2
∑

j=1

Pr
[

Ls1+j ≤ s1
µ

8

]

≤

s2
∑

j=1

exp

(

−C
n

α+4
6(α+1)

log2 n

)

= s2 · exp

(

−C
n

α+4
6(α+1)

log2 n

)

= o(1).

�
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Therefore, after the TSPAN finishes constructing the p-span, the size of the
“live” set of q-span is at least

|L(q)| ≥ Lt0+2s1 − o(s1) ≥ s1
µ

7
− o(s1) ≥ s1

µ

8
.

To keep our calculations as simple as possible, we will assume that |L(p)| ≥ s1
µ
8

as well, since we have proved that if TSPAN succeeds at the first stage for both
p- and q-spans, then w.h.p. |L(p)| ≥ s1

µ
7 .

Finally, we show that w.h.p. the spans produced in Steps 1–5, provided no
failure occurred, contain contradictory paths. In other words, we are looking for
the probability that spans do not contain complement clones after growing them
for s1 + s2 steps, i.e. at each step TSPAN was choosing only untouched clones
from the set U .

Lemma 16 (Contradictory paths). If for a pair of complementary clones p, q
Steps 1–5 are completed successfully, the probability that span(p) or span(q)

contains no 2 complementary clones is less than exp
(

− n
α2

−α−2
12α(α+1)

)

.

Proof. Let B (“bad”) be the event that after performing s1+ s2 steps, there
were no two complementary clones ever paired. This means, as was mentioned
previously, that at each step TSPAN was choosing u.a.r. only untouched clones
c ∈ U among L ∪ U clones.

Recall that sets U ,L, and C form a partition of the set S of all clones. Then
at any moment of time i we have Sn = Ci + Ui + Li = 2i+ Ui + Li. Hence,

Pr[B] =

s1+s2
∏

i=1

Ui

Li + Ui − 1

=

s1+s2
∏

i=1

(

1−
Li

Li + Ui − 1

)

=

s1+s2
∏

i=1

(

1−
Li

Sn − 2i− 1

)

≤

s2
∏

i=0

(

1−
Ls1+i

Sn

)

.

Next, Lemma 14 implies, that Ls1+i ≥ s1µ/8 for 0 ≤ i ≤ s2, so

Pr[B] =

s2
∏

i=0

(

1−
Lt+i

Sn

)

≤

s2
∏

i=0

(

1−
s1µ

8Sn

)

≤ exp
(

−
s1s2µ

8Sn

)

.
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Having s1 = n
α+4

6(α+1) , s2 = n
11α2+3α−2
12α(α+1) , and Sn = (1+o(1))nEξ w.h.p., we obtain

Pr[B] ≤ exp
(

−
s1s2µ

8Sn

)

= exp
(

−
µn

α+4
6(α+1)n

11α2+3α−2
12α(α+1)

8(1 + o(1))nEξ

)

≤ exp
(

− n
α2

−α−2
12α(α+1)

)

,

which proves the lemma. �

This completes the proof in the case α = 2 or Eξ2 > 3Eξ, and the next
proposition summarizes the result.

Proposition 2. Let φ ∼ C2
n(ξ), where ξ ∼ P (α) and α = 2 or Eξ2 > 3Eξ.

Then w.h.p. φ is unsatisfiable.

Proof. Recall that our algorithm grows spans for a sequence of pairs of
complementary clones waiting for the first success, that is, contradictory paths.
First, we estimate the probability of finding contradictory paths for some pair
of complementary clones in this sequence. Suppose that at some point we picked
clones p and q, and let {Ls1(p) ≥ s1µ/7}, {L2s1(q) ≥ s1µ/7}, and {q ∈ Us1} be
the events from Lemma 11. Then by Lemma 11 with probability at least 1

5s21
we

will be able to accumulate in each of the live sets at least s1µ/7 elements, while
constructing spans from the complementary clones p and q. Thus,

Pr[A1] := Pr
[

{Ls1(p) ≥ s1µ/7} ∧ {L2s1(q) ≥ s1µ/7} ∧ {q ∈ Us1}
]

≥
1

5s21
.

Next, Lemma 14 implies that if event A1 happens, then with probability at
least 1− o(1) we will be able to grow both spans for another s2 iterations, such
that sizes of the live sets never drop below s1µ/8 clones, i.e.

Pr[A2 |A1] := Pr





s2
⋂

j=1

{Ls1+j(p) ≥ s1µ/8} ∧

s2
⋂

j=1

{L2s1+s2+j(q) ≥ s1µ/8} |A1





≥ 1− o(1).

If the events A1 and A2 happen, then by Lemma 16 with probability at least
1 − o(1) the corresponding span will contain 2 complementary clones. Let us
denote by Comp(p) the event that there exist 2 complementary clones in the
span originating at p.
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Then, the probability of event Comp(p, q) that a pair of fixed complementary
clones p and q, after completing Steps 1–5 form contradictory paths is at least

Pr [Comp(p, q)] = Pr[Comp(p) ∧ Comp(q) ∧ A1 ∧ A2]

≥ Pr [Comp(p) ∧ Comp(q)] Pr [A1 ∧ A2]

= Pr[B̄]2 Pr [A2 |A1] Pr [A1]

≥

(

1− exp
(

− n
α2

−α−2
12α(α+1)

)

)2

(1− o(1))
1

5s21

= (1− o(1))
1

5s21
≥

1

6s21
=: Pfinal,

when n → ∞. In other words, Pfinal is a lower bound of the probability that 2
specific complementary clones p and q will form contradictory paths. However,
recall that we have Tn =

∑n
i=1 d

+
i d

−
i different pairs of complementary clones,

and, moreover, w.h.p. Tn = (1+ o(1))nEξ2−Eξ
4 , when α > 2. Since we repeat the

TSPAN procedure for at most K = n
7α+10

12(α+1) ≪ Tn different pair of clones, the
probability that none of the picked pairs form a contradiction path is at most

Pr

[

K
⋂

i=1

Comp(pi, qi)

]

≤
K
∏

i=1

(1− Pr [Comp(p, q)])

=

K
∏

i=1

(

1−
1

6s21

)

≤ exp

(

−
K

6s21

)

= exp

(

−
1

6
n

7α+10
12(α+1) n−2 α+4

6(α+1)

)

, since s1 = n
α+4

6(α+1)

= exp

(

−
1

6
n

α−2
4(α+1)

)

= o(1), since α > 2,

when n → ∞. Thus, we’ve obtained that when Eξ2 > 3Eξ, then w.h.p. we expect
that some pair of clones will form contradictory paths, witnessing unsatisfiability
of the formula φ. And so the proposition follows. �

5 Satisfiability of C2

n
(ξ), when ξ ∼ P (α) and Eξ2 < 3Eξ

Chvátal and Reed [15] argue that if 2-SAT formula φ is unsatisfiable, then it
contains a bicycle, see Section 2.3. Thus, the absence of bicycles may serve as
a convenient witness of formula’s satisfiability. The general idea of this section
is to show that w.h.p. there are no bicycles in φ ∼ C2

n(ξ), when ξ ∼ P (α) and
Eξ2 < 3Eξ.

Intuitively, when Eξ2 < 3Eξ, then we expect 2Tn

Sn
= 1 − µ′ > 0, where

µ′ > 0 is some small number. As it was shown in Lemma 7, the latter quantity
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approximates the number of newly added live clones, when running the TSPAN
procedure. Since TSPAN always performs at least one iteration of growing the
span, it may add at most ∆ clones into the live set after constructing the very
first span from the root. After that each subsequent iteration adds on average
≈ 2Tn

Sn
new live clones. So after running the TSPAN for j iterations, where

j → ∞, when n → ∞, then we expect the live set to contain around

Lt∗ = ∆

(

2Tn

Sn

)j

= ∆(1− µ′)j ≤ ∆e−jµ′

clones. Therefore, after O(log n) iterations, the live set becomes empty, and
TSPAN terminates. Thus, we expect paths of length at most O(log n), which is
not enough for bicycles to occur.

More formally we first show that in the case 2Tn

Sn
= 1− µ′ a random formula

is unlikely to contain long paths.

Lemma 17. If 2Tn

Sn
= 1−µ′ < 1, then paths in φ are of length O (logn), w.h.p.

Proof. Let k0 = ⌈ 6
µ′

logn⌉ and let Pk be the number of paths of length k

in GI(φ). Also recall that by L(φ) we denote the set of all literals in φ, while
deg(l), where l is some literal, denotes the total number of clones of the literal
l. Then

EPk0 ≤
∑

l1,...,lk0∈L(φ)

Pr [l1 =⇒ l2 =⇒ · · · =⇒ lk0 ∈ GI(φ)]

≤
∑

l1,...,lk0∈L(φ)

2 deg(l̄1) deg(l2)

Sn − 1

2 deg(l̄2) deg(l3)

Sn − 3
. . .

2 deg(l̄k0−1) deg(lk0)

Sn − 2k0 + 3

≤
∑

l1,lk0

2 deg(l̄1) deg(lk0)

Sn − 2k0

∑

l2,...,lk0−1

k0−1
∏

i=2

2 deg(l̄i) deg(li)

Sn − 2k0

≤
∑

l1,lk0

2∆2

Sn − 2k0

∑

l2,...,lk0−1

k0−1
∏

i=2

2 deg(l̄i) deg(li)

Sn − 2k0

≤
2n2∆2

Sn − 2k0

( 2Tn

Sn − 2k0

)k0−2

≤ (1 + o(1))
2n2∆2

Sn

(

(1 + o(1))
2Tn

Sn

)k0−2

.

Since w.h.p. Sn = (1 + o(1))nEξ, and 2Tn

Sn
= 1− µ′, we have

EPk0 ≤ (1 + o(1))
2n2∆2

Sn

(

(1 + o(1))
2Tn

Sn

)k0−2

≤
2n∆2

Eξ

(

(1 + o(1))(1 − µ′)
)k0−2

≤ 2n∆2
(

(1 + o(1))(1 − µ′)
)k0−2

,
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where the last inequality follows from the fact that Eξ ≥ 1 for any r.v. ξ ≥ 1.

Next, given large enough n, we can assume that (1 + o(1))(1 − µ′) ≤ 1 − µ′

2 .
Hence,

EPk0 ≤ 2n∆2
(

(1 + o(1))(1− µ′)
)k0−2

≤ 2n∆2
(

1−
µ′

2

)k0−2

≤ Cn∆2
(

1−
µ′

2

)k0

, where C > 0 is some constant

≤ Cn∆2e−µ′k0/2

≤ Cn∆2e−3 log n, since k0 = ⌈
6

µ′
logn⌉

≤ C
∆2

n2
.

Next, since α > 2, we have that ∆ = o
(

n1/2
)

(see Lemma 2). However, then

EPk0 ≤ C
∆2

n2
= C

o(n)

n2
= o(1),

and so w.h.p. there are no paths of length greater than k0 in GI(φ). �

Next we give a straightforward estimation of the number of ‘short’ bicycles.

Lemma 18. If 2Tn

Sn
= 1−µ′ < 1, then for any k the expected number of bicycles

of length k is at most (1 + o(1))2∆
2

Sn
((1 + o(1))(1 − µ′))

k
.

Proof. Let Bk be the number of bicycles of length k. Then simple calculation
verifies that

EBk ≤
∑

l1,...,lk∈L(φ)
u,v∈{l1,l̄1,...,lk,l̄k}

2 deg(l̄1) deg(l2)

Sn − 1
. . .

2 deg(l̄k−1) deg(lk)

Sn − 2k + 5

deg(u) deg(l1)

Sn − 2k + 3

deg(v) deg(l̄k)

Sn − 2k + 1

≤
∑

l1,...,lk∈L(φ)
u,v∈{l1,l̄1,...,lk,l̄k}

2 deg(l̄1) deg(l2)

Sn − 1
. . .

2 deg(l̄k−1) deg(lk)

Sn − 2k + 5

2∆ deg(l1)

Sn − 2k + 3

2∆ deg(l̄k)

Sn − 2k + 1

≤ (1 + o(1))
2∆2

Sn

∑

l1,...,lk∈L(φ)
u,v∈{l1,l̄1,...,lk,l̄k}

2 deg(l̄1) deg(l2)

Sn − 1
. . .

2 deg(l̄k−1) deg(lk)

Sn − 2k + 5

2 deg(l1) deg(l̄k)

Sn − 2k + 3

≤ (1 + o(1))
2∆2

Sn

∑

l1,...,lk∈L(φ)
u,v∈{l1,l̄1,...,lk,l̄k}

k
∏

i=1

(1 + o(1))
2 deg(l̄i) deg(li)

Sn

≤ (1 + o(1))
2∆2

Sn

∑

l1,...,lk∈L(φ)
u,v∈{l1,l̄1,...,lk,l̄k}

(1 + o(1))k
k
∏

i=1

2 deg(l̄i) deg(li)

Sn
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≤ (1 + o(1))
2∆2

Sn

∑

l1,...,lk∈L(φ)
u,v∈{l1,l̄1,...,lk,l̄k}

(1 + o(1))k
∏k

i=1 2 deg(l̄i) deg(li)

Sk
n

≤ (1 + o(1))
2∆2

Sn
(1 + o(1))k

(
∑

l∈L(φ) 2 deg(l̄) deg(l)

Sn

)k

≤ (1 + o(1))
2∆2

Sn
(1 + o(1))k

(

2Tn

Sn

)k

= (1 + o(1))
2∆2

Sn
((1 + o(1))(1 − µ′))

k
,

and the result follows. �

Hence, the above two lemmas imply that φ contains no bicycles.

Corollary 5. If 2Tn

Sn
= 1− µ′ < 1, then φ contains no bicycles, w.h.p.

Proof. Let B be the number of all bicycles in φ, while Bk is the number
of bicycles of length k. Due to Lemma 17, we expect no paths longer than
k0 = ⌈ 6

µ′
logn⌉, which means there are no bicycles longer than k0. Hence, B =

∑k0

k=2 Bk. Then by Markov’s inequality

Pr [B > 0] ≤ EB =

k0
∑

k=2

EBk

≤ (1 + o(1))
2∆2

Sn

k0
∑

k=2

((1 + o(1))(1 − µ′))
k
, from Lemma 18

≤ (1 + o(1))
2∆2

Sn

k0
∑

k=2

((1 + o(1))(1 − µ′))
k

Given large enough n, we can assume that (1 + o(1))(1− µ′) ≤ 1− µ′

2 . Then

Pr[B > 0] ≤ (1 + o(1))
2∆2

Sn

k0
∑

k=2

((1 + o(1))(1 − µ′))
k

≤ (1 + o(1))
2∆2

Sn

k0
∑

k=2

(

1−
µ′

2

)k

≤ (1 + o(1))
2∆2

Sn

∞
∑

k=1

e−µ′k/2

≤ (1 + o(1))
2∆2

Sn

1

eµ′/2 − 1
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≤
(1 + o(1))

eµ′/2 − 1

2∆2

Sn

≤ C
∆2

Sn
,

for some constant C > 0. Since α > 2, we recall that w.h.p. Sn = (1+ o(1))nEξ
and ∆ = o(n1/2). Then

Pr[B > 0] ≤ C
∆2

Sn
≤ C

o(n)

(1 + o(1))nEξ
= o(1).

Hence, w.h.p. we do not expect short bicycles in φ, and, since there are no long
paths, it follows that w.h.p. φ doesn’t have bicycles at all. �

It remains to argue that the inequality 2Tn

Sn
= 1− µ′ < 1 holds w.h.p.

Proposition 3. Let φ ∼ C2
n(ξ), where ξ ∼ P (α) and Eξ2 < 3Eξ. Then w.h.p.

φ is satisfiable.

Proof. Since Eξ2 and Eξ are both finite, we can conclude that α > 2, and so
from Lemma 1 and Theorem 3, we have that w.h.p.

Sn =
n
∑

i=1

deg(vi) =
n
∑

i=1

ξi = (1 + o(1))nEξ,

and

Tn =

n
∑

i=1

d+i d
−
i = (1 + o(1))nE

[

d+i d
−
i

]

= (1 + o(1))n
Eξ2 − Eξ

2
,

since E
[

d+i d
−
i

]

= Eξ2−Eξ
2 . Hence, when Eξ2 < 3Eξ it holds

2Tn

Sn
= (1 ± o(1))

Eξ2 − Eξ

2Eξ
= (1 ± o(1))

(

Eξ2

2Eξ
−

1

2

)

< 1,

Therefore, we can assume that

2Tn

Sn
= 1− µ′,

where 0 < µ′ < 1. By Lemma 17 there are no long paths in φ, when Eξ2 < 3Eξ.

Thus, it follows that there should be no long bicycles, and by Corollary 5
there are no bicycles in φ at all. Therefore, φ is satisfiable, which proves the
proposition. �
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