Skip to main content

Towards Effective Gait Recognition Based on Comprehensive Temporal Information Combination

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11633))

Included in the following conference series:

  • 1654 Accesses

Abstract

In this paper, we propose a novel deep learning based framework to effectively combine CNN (Convolutional Neural Network) and LSTM (Long Short-Term Memory) to facilitate accurate gait identification. Distinguished from traditional methods based on spatial information, our framework can take both spatial information and temporal cures into account. Meanwhile, its architecture applies novel hybrid layering structure, whose first layer is based CNN and aims at extracting gait’s spatial information. In the second layer, LSTM is used to obtain dynamic dependency among the gaits and thus achieve optimal modeling of sequential and spatial information of gait. Moreover, our architecture leads to (1) optimal contrastive loss and (2) maximized difference between inter-classes and minimized gap between intra-classes. Consequently, the recognition accuracy has been improved tremendously. Using the gait dataset CASIA-B test collection containing 124 subjects in different conditions and various views, our comprehensive experimental study demonstrates a variety of advantages over the state of the art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouchrika, I., Carter, J.N., Nixon, M.S.: Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras. Multimedia Tools Appl. 75(2), 1201–1221 (2016)

    Article  Google Scholar 

  2. Liu, N., Lu, J., Tan, Y.P.: Joint subspace learning for view-invariant gait recognition. IEEE Signal Process. Lett. 18(7), 431–434 (2011)

    Article  Google Scholar 

  3. Bashir, K., Xiang, T., Cross, G.S.: Correlation, view gait recognition using, strength. In: Proceedings of the DBLP British Machine Vision Conference, BMVC: Aberystwyth, UK, August 31 - September 3, 2010, pp. 1–11 (2010)

    Google Scholar 

  4. Zhao, G., Liu, G., Li, H., et al.: 3D gait recognition using multiple cameras. In: International Conference on Automatic Face and Gesture Recognition, pp. 529–534. IEEE Computer Society (2006)

    Google Scholar 

  5. Wu, Z., Huang, Y., Wang, L., et al.: A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 209–226 (2016)

    Article  Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Zhang, C., Liu, W., Ma, H., et al.: Siamese neural network based gait recognition for human identification. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2832–2836. IEEE (2016)

    Google Scholar 

  8. Sun, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. Adv. Neural. Inf. Process. 27, 1988–1996 (2014)

    Google Scholar 

  9. Lee, C.S., Elgammal, A.: Gait tracking and recognition using person-dependent dynamic shape model (2006)

    Google Scholar 

  10. Cunado, D., Nixon, M.S., Carter, J.N.: Using gait as a biometric, via phase-weighted magnitude spectra. In: BigĂ¼n, J., Chollet, G., Borgefors, G. (eds.) AVBPA 1997. LNCS, vol. 1206, pp. 93–102. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0015984

    Chapter  Google Scholar 

  11. Bobick, A.F., Johnson, A.Y.: Gait recognition using static, activity-specific parameters. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I-423-I-430. IEEE (2001)

    Google Scholar 

  12. Bouchrika, I., Nixon, M.S.: Model-based feature extraction for gait analysis and recognition. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2007. LNCS, vol. 4418, pp. 150–160. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71457-6_14

    Chapter  Google Scholar 

  13. Wang, L., Ning, H., Tan, T., et al.: Fusion of static and dynamic body biometrics for gait recognition. In: IEEE International Conference on Computer Vision, p. 1449. IEEE Computer Society (2003)

    Google Scholar 

  14. Yam, C., Nixon, M.: Model-based gait recognition. In: Li, S.Z., Jain, A. (eds.) Enclycopedia of Biometrics, pp. 633–639. Springer, Boston (2009)

    Chapter  Google Scholar 

  15. Abdelkader, C.B., Davis, L., Cutler, R.: Stride and cadence as a biometric in automatic person identification and verification. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pp. 372–377. IEEE (2002)

    Google Scholar 

  16. Ning, H., Tan, T., Wang, L., et al.: Kinematics-based tracking of human walking in monocular video sequences. Image Vis. Comput. 22(5), 429–441 (2004)

    Article  Google Scholar 

  17. Johnson, A.Y., Bobick, A.F.: A multi-view method for gait recognition using static body parameters. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 301–311. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45344-X_44

    Chapter  Google Scholar 

  18. Yam, C.Y.: Gait recognition by walking and running: a model-based approach 1–6 (2002)

    Google Scholar 

  19. Man, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2005)

    Google Scholar 

  20. Ajayi, R.: Gait recognition using pose kinematics and pose energy image. Sig. Process. 92(3), 780–792 (2012)

    Article  Google Scholar 

  21. Chen, C., Liang, J., et al.: Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recogn. Lett. 30(11), 977–984 (2009)

    Article  Google Scholar 

  22. Graves, A.: Generating sequences with recurrent neural networks. Comput. Sci. (2013)

    Google Scholar 

  23. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks, vol. 4, pp. 3104–3112 (2014)

    Google Scholar 

  24. Chao, H., He, Y., Zhang, J., et al.: GaitSet: regarding gait as a set for cross-view gait recognition (2018)

    Google Scholar 

  25. Liu, J., Sun, N., Li, X., Han, G., Yang, H., Sun, Q.: Rare bird sparse recognition via part-based gist feature fusion and regularized intraclass dictionary learning. Comput. Mater. Continua 55(3), 435–446 (2018)

    Google Scholar 

  26. Zhou, S., Liang, W., Li, J., Kim, J.-U.: Improved VGG model for road traffic sign recognition. Comput. Mater. Continua 57(1), 11–24 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hefei Ling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ling, H., Wu, J., Li, P. (2019). Towards Effective Gait Recognition Based on Comprehensive Temporal Information Combination. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11633. Springer, Cham. https://doi.org/10.1007/978-3-030-24265-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24265-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24264-0

  • Online ISBN: 978-3-030-24265-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics