Abstract
Quantum private query (QPQ) as a kind of protocol with strong practicability, its research depth is deepening. However, joint measurement (JM) attack poses a threat to the security of databases in protocol. Specifically, a malicious user can illegally obtain entries more than the average number of honest users from the database. Taking Jakobi et al.’s protocol as an example, a malicious user can obtain up to 500 bits from a database of 104 bits in one query instead of the expected 2.44 bits. In order to prevent JM attack, we design a new quantum private query protocol which has the similar procedure of raw oblivious key generation with Wei Chunyan et al.’s and Jakobi et al.’s. In our protocol, we add a step that Alice has to send back the measured qubits after some operation which ensures she must measure honestly. Therefore, our protocol can protect database security in theoretically, and the protocol can also improve the communication transmission distance because the photons Alice returns to Bob is re-prepared by her. Moreover, our protocol keeps the good peculiarities of QKD-based QPQs, e.g., its loss tolerant and robust against quantum memory attack.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gentner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60, 592 (2000)
Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, p. 124. IEEE, Piscataway (1994)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, p. 212. ACM, New York (1996)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100, 230502 (2008)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries: security analysis. IEEE Trans. Inf. Theory 56, 3465 (2010)
Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84, 022313 (2011)
Gao, F., Liu, B., Wen, Q.Y., Chen, H.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20, 17411 (2012)
Panduranga Rao, M.V., Jakobi, M.: Towards communication-efficient quantum oblivious key distribution. Phys. Rev. A 87, 012331 (2013)
Zhang, J.L., Guo, F.Z., Gao, F., Liu, B., Wen, Q.Y.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88, 022334 (2013)
Wei, C.Y., Gao, F., Wen, Q.Y., Wang, T.Y.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)
Chan, P., Lucio-Martinez, I., Mo, X., Simon, C., Tittel, W.: Performing private database queries in a real-world environment using a quantum protocol. Sci. Rep. 4, 5233 (2014)
Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)
Liu, B., Gao, F., Huang, W.: QKD-based quantum private query without a failure probability. Sci. China-Phys. Mech. Astron. 58, 100301 (2015)
Jakobi, M., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)
Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)
Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, p. 175. IEEE, New York (1984)
Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1154 (1997)
Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)
Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: On the information-splitting essence of two types of quantum key distribution protocols. Phys. Lett. A 355, 172–175 (2006)
Huang, W., Guo, F.Z., Huang, Z., Wen, Q.Y., Zhu, F.C.: Three-particle QKD protocol against a collective noise. Opt. Commun. 284(1), 536–540 (2011)
Salas, P.J.: Security of plug-and-play QKD arrangements with finite resources. Quantum Inf. Comput. 13(9–10), 861–879 (2013)
Liu, B., et al.: Choice of measurement as the secret. Phys. Rev. A 89(4), 042318-1–042318-7 (2014)
Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)
Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)
Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)
Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)
Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)
Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum secret sharing schemes. Phys. Rev. A 69(5), 052307-1–052307-5 (2004)
Lu, H., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117(3), 030501-1–030501-5 (2016)
Xiang, Y., et al.: Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications. Phys. Rev. A 95, 1–6 (2017)
Kogias, I., et al.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315-1–012315-6 (2017)
Massoud, H.D., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55, 1828–1831 (2012)
Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902-1–187902-4 (2002)
Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greeberger-Horne-Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)
Huang, W., et al.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308-1–100308-9 (2012)
Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)
Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)
Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Rev. Lett. 358(4), 256–258 (2006)
Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253(1–3), 15–20 (2005)
Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)
Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)
Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)
Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112, 040502 (2014)
Lee, H.Y., Hong, C.H., Kim, H.S., Lim, J.G., Yang, H.Y.: Arbitrated quantum signature scheme with message recovery. Phys. Rev. Lett. 321(5–6), 295–300 (2004)
Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)
Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)
Tang, X., Chen, Z., Zhang, H., Liu, X., Shi, Y., Shahzadi, A.: An optimized labeling scheme for reachability queries. CMC: Comput. Mater. Continua 055(2), 267–283 (2018)
Zhang, X., Wang, P., Sun, W., Badler, N.I.: A novel twist deformation model of soft tissue in surgery simulation. CMC: Comput. Mater. Continua 55(2), 297–319 (2018)
Acknowledgments
This paper is supported by Development of quantum cryptography equipment and terminal modules for distribution of electricity business (536800170042).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, X. et al. (2019). A New Quantum Private Query Protocol with Better Performance in Resisting Joint-Measurement Attack. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11635. Springer, Cham. https://doi.org/10.1007/978-3-030-24268-8_48
Download citation
DOI: https://doi.org/10.1007/978-3-030-24268-8_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24267-1
Online ISBN: 978-3-030-24268-8
eBook Packages: Computer ScienceComputer Science (R0)